Uncut Models
Collection
Models uncensored using the "Control Adapters" method of fine-tuning.
•
3 items
•
Updated
NOTE: Read the Control Adapter documentation for implementation details.
Trained via qlora-pipe-lite:
# ==============================
# MODEL AND OUTPUT CONFIGURATION
# ==============================
model_dir = '/mnt/models/command-a-03-2025'
output_dir = '/mnt/finetunes/command-a-03-2025-uncut'
# ===========================
# TRAINING TYPE CONFIGURATION
# ===========================
use_control_adapters = true
load_in_4bit = true
# =============================
# CONTROL ADAPTER CONFIGURATION
# =============================
# ~4 tokens per trainable parameter (2e8/(64*64*(12288+1)))
lora_rank = 64
control_adapter_gamma = 0.1
# =======================
# OPTIMIZER CONFIGURATION
# =======================
lr = 1e-3
# ======================
# TRAINING CONFIGURATION
# ======================
sequence_len = 4096
pipeline_stages = 2
# 30 batch size (3*10) --> 120k tokens per step (4096*30)
gradient_accumulation_steps = 10
use_column_major_topology = true
# =====================
# DATASET CONFIGURATION
# =====================
sequence_prefix = 5 # "<BOS_TOKEN>"
document_prefix = [255000, 255007] # "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
document_suffix = 255001 # "<|END_OF_TURN_TOKEN|>"
mask_tokens = true # Mask all special tokens
drop_tails = true
mix_datasets = true
# -------------------
# POSITIVE CLASS DATA
# -------------------
[[datasets]]
dataset_path = '/mnt/datasets/instruction-responses-500MB/*.json'
control_class = 1
# -------------------
# NEGATIVE CLASS DATA
# -------------------
[[datasets]]
dataset_path = '/mnt/datasets/instruction-refusals-500MB/*.json'
control_class = -1
using ~200M tokens (ie: ~100M positive and ~100M negative) from:
taking just under 4 days using 6x RTX A6000
over 3 machines:
(hence the 30 batch size: (num_gpus / pipeline_stages) * gradient_accumulation_steps = (6 / 2) * 10 = 30
)
The control adapter was then converted to a LoRA using control_adapter_to_lora.py:
jukofyork/command-a-03-2025-uncut-lora
and then merged using the merge-lora space.
See https://huggingface.co/jukofyork/command-a-03-2025-uncut-lora-gguf for a LoRA in GGUF format that can be used with the --lora
option on top of the base CohereLabs/c4ai-command-a-03-2025 to get the same effect.