Model Trained Using AutoNLP

  • Problem type: Multi-class Classification
  • Model ID: 18753417
  • CO2 Emissions (in grams): 112.75546781635975

Validation Metrics

  • Loss: 0.9065971970558167
  • Accuracy: 0.6680274633512711
  • Macro F1: 0.5384854358272774
  • Micro F1: 0.6680274633512711
  • Weighted F1: 0.6414749238882866
  • Macro Precision: 0.6744495173269196
  • Micro Precision: 0.6680274633512711
  • Weighted Precision: 0.6634090047492259
  • Macro Recall: 0.5078466493896978
  • Micro Recall: 0.6680274633512711
  • Weighted Recall: 0.6680274633512711

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-song-lyrics-18753417

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-song-lyrics-18753417", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-song-lyrics-18753417", use_auth_token=True)

inputs = tokenizer("I love AutoNLP", return_tensors="pt")

outputs = model(**inputs)
Downloads last month
167
Safetensors
Model size
109M params
Tensor type
I64
Β·
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train juliensimon/autonlp-song-lyrics-18753417

Spaces using juliensimon/autonlp-song-lyrics-18753417 2