jumelet/gptbert-rus-100steps-small

GPT-BERT style BabyBabyLLM model for language rus.

This repository may include both main and EMA variants.

Default variant exposed to generic loaders: ema

Variants Available

ema, main

Files

  • model.safetensors (alias of default variant)
  • model_ema.safetensors
  • pytorch_model.bin (legacy PyTorch format)
  • rus-2gpu-100steps.bin (raw training checkpoint)
  • rus-2gpu-100steps_ema.bin (raw training checkpoint)

Configuration

{
  "attention_probs_dropout_prob": 0.1,
  "hidden_dropout_prob": 0.1,
  "hidden_size": 384,
  "intermediate_size": 1280,
  "max_position_embeddings": 512,
  "position_bucket_size": 32,
  "num_attention_heads": 6,
  "num_hidden_layers": 12,
  "vocab_size": 8192,
  "layer_norm_eps": 1e-05,
  "force_causal_mask": true,
  "classifier_dropout": 0.1,
  "classifier_layer_norm_eps": 1e-05,
  "num_labels": 2
}

Tokenizer file: tokenizer_rus_vs8192.json

Quick Usage

from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = 'jumelet/gptbert-rus-100steps-small'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
out = model(**tok('Hello world', return_tensors='pt'))

Forced Causal Attention

Causal attention is enforced during inference by applying a triangular future mask inside the remote code. This prevents the hybrid GPT-BERT layers from attending to future tokens even when a bidirectional mask is provided.

Sequence Classification

GPTBertForSequenceClassification mirrors the original GLUE classifier head for downstream fine-tuning.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_id = 'jumelet/gptbert-rus-100steps-small'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id, trust_remote_code=True)
outputs = model(**tok('This movie was great!', return_tensors='pt'))
print(outputs.logits)

Notes

  • Converted on 2025-10-04T20:26:52.004061+00:00
  • Weights are the exact trained parameters; no new layers were initialized.
  • Requires trust_remote_code=True due to custom architecture.
Downloads last month
17
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support