SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 10 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Groceries |
|
Transport |
|
Shopping |
|
Transfer |
|
Food |
|
Salary |
|
Investment | |
Other |
|
Utilities |
|
Personal Care |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8929 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("k3vin-samson/bank-transaction-classifeer")
# Run inference
preds = model("CARD NO.400536XXXXXX9172 CARS TAXI ABU DHABI:AE 882334 02-01-2025 14.50,AED")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 9.1696 | 18 |
Label | Training Sample Count |
---|---|
Food | 23 |
Groceries | 20 |
Investment | 4 |
Other | 8 |
Personal Care | 2 |
Salary | 3 |
Shopping | 14 |
Transfer | 21 |
Transport | 12 |
Utilities | 5 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0018 | 1 | 0.2229 | - |
0.0893 | 50 | 0.1531 | - |
0.1786 | 100 | 0.0814 | - |
0.2679 | 150 | 0.0701 | - |
0.3571 | 200 | 0.0207 | - |
0.4464 | 250 | 0.0158 | - |
0.5357 | 300 | 0.0132 | - |
0.625 | 350 | 0.0055 | - |
0.7143 | 400 | 0.0026 | - |
0.8036 | 450 | 0.0013 | - |
0.8929 | 500 | 0.001 | - |
0.9821 | 550 | 0.0008 | - |
1.0714 | 600 | 0.0007 | - |
1.1607 | 650 | 0.0007 | - |
1.25 | 700 | 0.0004 | - |
1.3393 | 750 | 0.0004 | - |
1.4286 | 800 | 0.0003 | - |
1.5179 | 850 | 0.0003 | - |
1.6071 | 900 | 0.0005 | - |
1.6964 | 950 | 0.0005 | - |
1.7857 | 1000 | 0.0003 | - |
1.875 | 1050 | 0.0002 | - |
1.9643 | 1100 | 0.0003 | - |
2.0536 | 1150 | 0.0003 | - |
2.1429 | 1200 | 0.0002 | - |
2.2321 | 1250 | 0.0002 | - |
2.3214 | 1300 | 0.0003 | - |
2.4107 | 1350 | 0.0003 | - |
2.5 | 1400 | 0.0002 | - |
2.5893 | 1450 | 0.0002 | - |
2.6786 | 1500 | 0.0002 | - |
2.7679 | 1550 | 0.0002 | - |
2.8571 | 1600 | 0.0002 | - |
2.9464 | 1650 | 0.0002 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support