SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
Groceries
  • 'CARD NO.400536XXXXXX9172 LULU HYPERMARKET\ufffeWTC ABU DHABI:AE 312185 08-11-2024 0.75,AED'
  • 'CARD NO.400536XXXXXX9172 NOON Minutes DUBAI:AE 467568 01-05-2025 25.00,AED'
  • 'CARD NO.400536XXXXXX9172 LULU HYPERMARKET\ufffeWTC ABU DHABI:AE 128734 05-12-2024 5.60,AED'
Transport
  • 'CARD NO.400536XXXXXX9172 Integrated Transport C Abu Dhabi:AE 123260 20-09-2024 20.00,AED'
  • 'CARD NO.400536XXXXXX9172 Thrifty Rent A Car DUBAI:AE 654383 08-10-2024 147.00,AED'
  • 'CARD NO.400536XXXXXX9172 CAREEM FOOD Dubai:AE 541167 17-11-2024 31.56,AED'
Shopping
  • 'CARD NO.400536XXXXXX9172 MAJESTIC OPTICS COMPANY B ABU DHABI:AE 427849 25-09-2024 100.00,AED'
  • 'CARD NO.400536XXXXXX9172 Temu.com Dublin 4:IE 566842 30-10-2024 25.58,AED'
  • 'CARD NO.400536XXXXXX9172 AWS EMEA aws.amazon.co:LU 891744 02-10-2024 2.10,USD'
Transfer
  • 'RULE TRANSFER TO KEVIN SAMSON WITH ONE-SHOT SAVING'
  • 'MEPAY TRANSFER FROM SARANG SAJITH MURIKKO LI SAJIT H KATTINTAVIDE MURIKKOLI MOBILE NO. 009715XXXX2766 ; ; BNK REF.-80280-1927922'
  • 'MEPAY TRANSFER TO ATM EI ATM -AIRPORT ROAD BRANCH MOBILE NO. 009715XXXX9454; ; BNK REF.-80280-169415 8'
Food
  • 'CARD NO.400536XXXXXX9172 SMILES FOOD Abu Dhabi:AE 609846 05-01-2025 28.44,AED'
  • 'CARD NO.400536XXXXXX9172 KFC Sharjah:AE 683418 15-11-2024 12.00,AED'
  • 'CARD NO.400536XXXXXX9172 SASU CAFE Sharjah:AE 677254 05-11-2024 52.00,AED'
Salary
  • 'IPP REF 20241226ADC6B9811094567470947 420168603 SM ART SOFTWARE SYSTEMS SOLUTIONS COMPUTER SERVICES'
  • 'IPP REF 20240906ADC6B9811115537894689 374851134 SM ART SOFTWARE SYSTEMS SOLUTIONS COMPUTER SERVICES'
  • 'IPP REF 20241127ADC6B9811155459103219 407878556 SM ART SOFTWARE SYSTEMS SOLUTIONS COMPUTER SERVICES'
Investment
Other
  • 'TO BUY SOMETHING SPECIAL WITH SET AND FORGET'
  • 'IPP REF 20240912E096B9811115139169618 56A5999A02A5 4D14A7580AE54 SHAHROZ MALIK MALIK MUHA'
  • 'IPP REF 20240916NBA6B9811174440033095 FT2426063614 LOUEES IBRAHEM ALHANNA THANKS'
Utilities
  • 'CARD NO.400536XXXXXX9172 ADNOC AL WIDAYAHI 166 ABUDHABI:AE 599558 05-11-2024 40.04,AED'
  • 'CARD NO.400536XXXXXX9172 :27:33 E8001182 758692 AIRPORT ROAD BRANCH DUBAI AE'
  • 'CARD NO.400536XXXXXX9172 BITS PILANI FZ LLC DUBAI:AE 395442 26-11-2024 300.00,AED'
Personal Care
  • 'CARD NO.400536XXXXXX9172 CROWN RUBY SALON ABU DHABI:AE 101427 03-11-2024 25.00,AED'
  • 'CARD NO.400536XXXXXX9172 CROWN RUBY SALON ABU DHABI:AE 270336 31-12-2024 25.00,AED'

Evaluation

Metrics

Label Accuracy
all 0.8929

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("k3vin-samson/bank-transaction-classifeer")
# Run inference
preds = model("CARD NO.400536XXXXXX9172 CARS TAXI ABU DHABI:AE 882334 02-01-2025 14.50,AED")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 9.1696 18
Label Training Sample Count
Food 23
Groceries 20
Investment 4
Other 8
Personal Care 2
Salary 3
Shopping 14
Transfer 21
Transport 12
Utilities 5

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0018 1 0.2229 -
0.0893 50 0.1531 -
0.1786 100 0.0814 -
0.2679 150 0.0701 -
0.3571 200 0.0207 -
0.4464 250 0.0158 -
0.5357 300 0.0132 -
0.625 350 0.0055 -
0.7143 400 0.0026 -
0.8036 450 0.0013 -
0.8929 500 0.001 -
0.9821 550 0.0008 -
1.0714 600 0.0007 -
1.1607 650 0.0007 -
1.25 700 0.0004 -
1.3393 750 0.0004 -
1.4286 800 0.0003 -
1.5179 850 0.0003 -
1.6071 900 0.0005 -
1.6964 950 0.0005 -
1.7857 1000 0.0003 -
1.875 1050 0.0002 -
1.9643 1100 0.0003 -
2.0536 1150 0.0003 -
2.1429 1200 0.0002 -
2.2321 1250 0.0002 -
2.3214 1300 0.0003 -
2.4107 1350 0.0003 -
2.5 1400 0.0002 -
2.5893 1450 0.0002 -
2.6786 1500 0.0002 -
2.7679 1550 0.0002 -
2.8571 1600 0.0002 -
2.9464 1650 0.0002 -

Framework Versions

  • Python: 3.11.13
  • SetFit: 1.1.2
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Datasets: 2.14.4
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for k3vin-samson/setfit-bank-transaction-classifier

Finetuned
(298)
this model

Evaluation results