Qwen2.5_Coder_14B_CodingModel
Developer: kamranrafi
Base model: Qwen/Qwen2.5-Coder-14B-Instruct
Objective: Codegeneration with explanations.
License: Apache-2.0
Dataset: nvidia/OpenCodeReasoning
Quick Inference
Transformers (PyTorch)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "kamranrafi/Qwen2.5_Coder_14B_CodingModel"
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="cuda:1"
)
def chat(user_msg, max_new_tokens=512, temperature=0.2, top_p=0.9):
msgs = [
{"role":"system","content": "You are Qwen2.5 Coder 14B Coding Model, a smart coding assistant.\n"},
{"role":"user","content": user_msg},
]
prompt = tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
inputs = tok(prompt, return_tensors="pt").to(model.device)
out = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=temperature > 0
)
text = tok.decode(out[0], skip_special_tokens=True)
# Optional: trim everything before the assistant turn
return text.split("<|im_start|>assistant")[-1].strip()
print(chat("Create a function to return sorted list."))
🧾 Citation
If you use this model, please cite:
@misc{
title = {Qwen2.5_Coder_14B_CodingModel},
author = {Muhammad Kamran Rafi},
year = {2025},
howpublished = {\url{https://huggingface.co/kamranrafi/Qwen2.5_Coder_14B_CodingModel}},
note = {Fine-tuned with Unsloth on nvidia/OpenCodeReasoning}
}
This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 29