|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlnet-large-cased-ner-food-recipe-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlnet-large-cased-ner-food-recipe-v2 |
|
|
|
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1478 |
|
- Precision: 0.8033 |
|
- Recall: 0.8867 |
|
- F1: 0.8429 |
|
- Accuracy: 0.9708 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.5 | 400 | 0.1619 | 0.6591 | 0.8147 | 0.7287 | 0.9507 | |
|
| 0.4091 | 1.01 | 800 | 0.1488 | 0.7832 | 0.8762 | 0.8271 | 0.9689 | |
|
| 0.1678 | 1.51 | 1200 | 0.1538 | 0.8116 | 0.8862 | 0.8473 | 0.9712 | |
|
| 0.1452 | 2.01 | 1600 | 0.1374 | 0.7638 | 0.8653 | 0.8114 | 0.9652 | |
|
| 0.1359 | 2.51 | 2000 | 0.1450 | 0.7837 | 0.8858 | 0.8316 | 0.9678 | |
|
| 0.1359 | 3.02 | 2400 | 0.1403 | 0.778 | 0.8853 | 0.8282 | 0.9676 | |
|
| 0.1143 | 3.52 | 2800 | 0.1515 | 0.8128 | 0.8812 | 0.8456 | 0.9721 | |
|
| 0.1189 | 4.02 | 3200 | 0.1420 | 0.8069 | 0.8862 | 0.8447 | 0.9711 | |
|
| 0.1165 | 4.52 | 3600 | 0.1460 | 0.7861 | 0.8848 | 0.8325 | 0.9687 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|