See axolotl config
axolotl version: 0.8.0.dev0
# 学習のベースモデルに関する設定
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# 学習後のモデルのHFへのアップロードに関する設定
hub_model_id: kazuyamaa/DeepSeek-R1-Distill-Qwen-32B-axolotl-sft-v1.0
hub_strategy: "end"
push_dataset_to_hub:
hf_use_auth_token: true
# Liger Kernelの設定(学習の軽量・高速化)
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_cross_entropy: false
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
# 量子化に関する設定
load_in_8bit: false
load_in_4bit: true
# SFTに利用するchat templateの設定
chat_template: gemma
# 学習データセットの前処理に関する設定
datasets:
- path: kanhatakeyama/ramdom-to-fixed-multiturn-Calm3
split: 20240806filtered[0:10000]
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered
split: train[0:10000]
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted
split: train[0:10000]
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered
split: train[0:10000]
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/Open-Platypus-Japanese-masked-formatted
split: train[0:10000]
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja
split: train[0:10000]
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/magpie-ultra-v0.1-formatted
split: train[0:10000]
type: chat_template
field_messages: conversations
message_field_role: role
message_field_content: content
- path: Aratako/orca-agentinstruct-1M-v1-selected
split: train[0:10000]
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
- path: Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k
split: train[0:10000]
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
# データセット、モデルの出力先に関する設定
shuffle_merged_datasets: true
dataset_prepared_path: /workspace/data/sft-data
output_dir: /content/output/DeepSeek-R1-Distill-Qwen-32B-axolotl-sft-v1.0
# valid datasetのサイズ
val_set_size: 0.05
# LoRAに関する設定(フルファインチューニングしたい場合は全て空欄にする)
adapter: qlora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
# wandbに関する設定
#wandb_project: axolotl
#wandb_entity: kazukitakayamas051
#wandb_watch:
#wandb_name: sft-lora-1
#wandb_log_model:
# 学習に関する様々な設定
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 3e-4
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_strategy: steps
save_steps: 50
save_total_limit: 2
warmup_steps: 10
eval_steps: 50
eval_batch_size: 1
eval_table_size:
eval_max_new_tokens:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
DeepSeek-R1-Distill-Qwen-32B-axolotl-sft-v1.0
This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-32B on the kanhatakeyama/ramdom-to-fixed-multiturn-Calm3, the Aratako/Magpie-Tanuki-Qwen2.5-72B-Answered, the Aratako/magpie-qwen2.5-32b-reasoning-100k-formatted, the Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered, the Aratako/Open-Platypus-Japanese-masked-formatted, the kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja, the Aratako/magpie-ultra-v0.1-formatted, the Aratako/orca-agentinstruct-1M-v1-selected and the Aratako/Synthetic-JP-EN-Coding-Dataset-801k-50k datasets. It achieves the following results on the evaluation set:
- Loss: 0.6154
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0196 | 0.0008 | 1 | 0.9386 |
0.732 | 0.0381 | 50 | 0.7104 |
0.7803 | 0.0763 | 100 | 0.6853 |
0.6013 | 0.1144 | 150 | 0.6712 |
0.6767 | 0.1526 | 200 | 0.6628 |
0.701 | 0.1907 | 250 | 0.6565 |
0.6976 | 0.2289 | 300 | 0.6520 |
0.7022 | 0.2670 | 350 | 0.6487 |
0.6889 | 0.3051 | 400 | 0.6449 |
0.6673 | 0.3433 | 450 | 0.6411 |
0.6067 | 0.3814 | 500 | 0.6382 |
0.644 | 0.4196 | 550 | 0.6357 |
0.9572 | 0.4577 | 600 | 0.6336 |
0.6466 | 0.4959 | 650 | 0.6310 |
0.6781 | 0.5340 | 700 | 0.6291 |
0.6473 | 0.5721 | 750 | 0.6274 |
0.6235 | 0.6103 | 800 | 0.6255 |
0.6564 | 0.6484 | 850 | 0.6238 |
0.6009 | 0.6866 | 900 | 0.6221 |
0.5759 | 0.7247 | 950 | 0.6208 |
0.5817 | 0.7628 | 1000 | 0.6197 |
0.6438 | 0.8010 | 1050 | 0.6190 |
0.6102 | 0.8391 | 1100 | 0.6180 |
0.5997 | 0.8773 | 1150 | 0.6170 |
0.5896 | 0.9154 | 1200 | 0.6164 |
0.5713 | 0.9536 | 1250 | 0.6158 |
0.6164 | 0.9917 | 1300 | 0.6154 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 26
Model tree for kazuyamaa/DeepSeek-R1-Distill-Qwen-32B-axolotl-sft-v1.0
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B