keenanpepper's picture
Upload folder using huggingface_hub
e954088 verified
---
license: apache-2.0
base_model: llama
library_name: transformers
pipeline_tag: text-generation
tags:
- one-way-polyglot
- japanese
- english
- bilingual
- small-model
---
# one-way-polyglot-12m-untied
A one-way polyglot language model trained to understand Japanese but generate only English.
## Model Details
- **Architecture**: LLaMA-based transformer
- **Parameters**: 12,714,240 (12.7M)
- **Vocabulary**: 16,384 tokens (bilingual SentencePiece)
- **Context Length**: 512 tokens
- **Embedding Strategy**: Untied
## Capabilities
- **Semantic Transfer**: Understands Japanese input and generates contextually appropriate English
- **One-Way Constraint**: Strong bias toward English-only generation
- **Name Transliteration**: Can transliterate Japanese names to English (context-dependent)
## Training Data
Trained on bilingual Japanese-English story data with masked loss on Japanese prefixes to enforce one-way generation.
## Usage
```python
from transformers import LlamaForCausalLM, AutoTokenizer
model = LlamaForCausalLM.from_pretrained("one-way-polyglot-12m-untied")
tokenizer = AutoTokenizer.from_pretrained("one-way-polyglot-12m-untied")
# Japanese input β†’ English output (primary use case)
prompt = "ζ˜”γ€…γ€θ΅€γ„ε‚˜γ‚’ζŒγ£γŸε°‘ε₯³γŒγ„γΎγ—γŸγ€‚"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Mixed-language name transliteration
prompt = "ε€ͺιƒŽγ―ε…¬εœ’γ§θŠ±ε­γ¨ιŠγ‚“γ§γ„γΎγ—γŸγ€‚After playing, Taro told Hanako that"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=30, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# English text (works perfectly with case folding)
prompt = "Hello World" # Automatically normalized to lowercase
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=30, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Tokenizer Features
- **βœ… Case Folding**: "Hello", "hello", and "HELLO" produce identical tokenization
- **βœ… Japanese Support**: Full Japanese text support with proper normalization
- **βœ… No UNK Tokens**: Proper handling of uppercase/lowercase English text
- **βœ… SentencePiece Compatibility**: Built using proper Unigram model with normalization
## Model Variants
This is part of a series exploring one-way polyglot capabilities:
- 1.25M parameters (tied embeddings)
- 8.5M parameters (tied embeddings)
- 12.7M parameters (untied embeddings)
- 15.7M parameters (tied embeddings)
## License
Apache 2.0