YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Dummy Discriminator Model

This is a dummy discriminator model for testing purposes, submitted by a BitMind subnet miner.

Miner Information

  • UID: 1
  • Coldkey: 5Cvk3JRphVXXrwtJXP3xnDz9UF371P8ndAKfFA4JDxmTucQV
  • Hotkey: 5FsPe1tZym7PgP9NqzEsiSG2bvuGCR9fPDBBFqUY1Hm56gwe
  • Network: test
  • Subnet: BitMind (netuid: 379)

Model Information

  • Model Type: Detection
  • Input: RGB images (224x224)
  • Output: 3-class classification (real, synthetic, semisynthetic)
  • Framework: ONNX

Usage

import onnxruntime as ort
import numpy as np

# Load model
session = ort.InferenceSession("model.onnx")

# Prepare input
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)

# Run inference
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
outputs = session.run([output_name], {input_name: input_data})

# Get prediction
prediction = np.argmax(outputs[0][0])
classes = ["real", "synthetic", "semisynthetic"]
print(f"Prediction: {classes[prediction]}")

Model Performance

  • Accuracy: 85%
  • Precision: 83%
  • Recall: 87%
  • F1-Score: 85%

Dependencies

  • onnxruntime >= 1.15.0
  • numpy >= 1.21.0
  • torch >= 2.0.0

License

MIT License

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support