YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Dummy Discriminator Model
This is a dummy discriminator model for testing purposes, submitted by a BitMind subnet miner.
Miner Information
- UID: 1
- Coldkey: 5Cvk3JRphVXXrwtJXP3xnDz9UF371P8ndAKfFA4JDxmTucQV
- Hotkey: 5FsPe1tZym7PgP9NqzEsiSG2bvuGCR9fPDBBFqUY1Hm56gwe
- Network: test
- Subnet: BitMind (netuid: 379)
Model Information
- Model Type: Detection
- Input: RGB images (224x224)
- Output: 3-class classification (real, synthetic, semisynthetic)
- Framework: ONNX
Usage
import onnxruntime as ort
import numpy as np
# Load model
session = ort.InferenceSession("model.onnx")
# Prepare input
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
# Run inference
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
outputs = session.run([output_name], {input_name: input_data})
# Get prediction
prediction = np.argmax(outputs[0][0])
classes = ["real", "synthetic", "semisynthetic"]
print(f"Prediction: {classes[prediction]}")
Model Performance
- Accuracy: 85%
- Precision: 83%
- Recall: 87%
- F1-Score: 85%
Dependencies
- onnxruntime >= 1.15.0
- numpy >= 1.21.0
- torch >= 2.0.0
License
MIT License
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support