kernel
flash-attn3 / tests /test_flash_attn.py
danieldk's picture
danieldk HF Staff
Fix ops backward compatibility tests
557701f
import os
import math
import itertools
import pytest
import torch
import torch.nn.functional as F
from torch._C import parse_schema
from einops import rearrange, repeat
apply_rotary_emb = None
from padding import pad_input, unpad_input
from test_util import (
attention_ref,
generate_qkv,
generate_random_padding_mask,
)
import kernels
flash_attn3 = kernels.get_kernel("kernels-community/flash-attn3")
ops = flash_attn3._ops.ops
add_op_namespace_prefix = flash_attn3._ops.add_op_namespace_prefix
DISABLE_BACKWARD = os.getenv("FLASH_ATTENTION_DISABLE_BACKWARD", "FALSE") == "TRUE"
DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE"
DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE"
DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE"
DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE"
DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE"
DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE"
DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE"
DISABLE_FP8 = os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE" or torch.cuda.get_device_capability("cuda")[0] < 9
DISABLE_HDIM64 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM64", "FALSE") == "TRUE"
DISABLE_HDIM96 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM96", "FALSE") == "TRUE"
DISABLE_HDIM128 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM128", "FALSE") == "TRUE"
DISABLE_HDIM192 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM192", "FALSE") == "TRUE"
DISABLE_HDIM256 = os.getenv("FLASH_ATTENTION_DISABLE_HDIM256", "FALSE") == "TRUE"
COMPILED_HDIMS = (
[]
+ ([64] if not DISABLE_HDIM64 else [])
+ ([96] if not DISABLE_HDIM96 else [])
+ ([128] if not DISABLE_HDIM128 else [])
+ ([192] if not DISABLE_HDIM192 else [])
+ ([256] if not DISABLE_HDIM256 else [])
)
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float16] if not DISABLE_FP16 else []) + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
# @pytest.mark.parametrize("has_qv", [False, True])
@pytest.mark.parametrize("has_qv", [False])
# @pytest.mark.parametrize("deterministic", [False, True])
@pytest.mark.parametrize("deterministic", [False])
@pytest.mark.parametrize("softcap", [0.0] + ([15.0] if not DISABLE_SOFTCAP else []))
# @pytest.mark.parametrize("softcap", [0.0])
@pytest.mark.parametrize("local", [False] + ([True] if not DISABLE_LOCAL else []))
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
# @pytest.mark.parametrize("V_colmajor", [False, True])
@pytest.mark.parametrize("V_colmajor", [False])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [64, 96, 128, 192])
@pytest.mark.parametrize("d", COMPILED_HDIMS)
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 1),
(64, 128),
(128, 192),
(256, 256),
(239, 1),
(799, 3),
(113, 203),
(113, 128),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(384, 256),
(640, 128),
(512, 256),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(4096, 4096),
(4224, 4224),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
def test_flash_attn_output(
seqlen_q, seqlen_k, d, causal, local, softcap, V_colmajor, deterministic, has_qv, mha_type, dtype
):
if V_colmajor and (seqlen_k % 16 != 0 or dtype != torch.float8_e4m3fn):
pytest.skip("V_colmajor requires seqlen_k to be a multiple of 16 and dtype to be float8_e4m3fn")
device = "cuda"
# set seed
torch.random.manual_seed(0)
# batch_size = 40
# nheads = 16
batch_size = 9 if seqlen_k <= 2048 else 2
# batch_size = 1
nheads = 6
# nheads = 1
nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
if dtype == torch.float8_e4m3fn:
dv_vals = [d]
attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if not DISABLE_LOCAL else [0]
for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
if softcap > 0.0:
# Ensure the values of qk are at least within softcap range.
q_ref = (q_ref * softcap / 4)
q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
if has_qv:
qv_ref = torch.randn(batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
else:
qv_ref = None
# Put window_size after QKV randn so that window_size changes from test to test
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)).tolist()
# window_size = (-1, -1) if not local else (16, 0)
if dtype == torch.float8_e4m3fn:
q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)]
else:
q_descale, k_descale, v_descale = None, None, None
q, k, v = [x.detach().to(dtype).requires_grad_() for x in (q_ref, k_ref, v_ref)]
qv = qv_ref.detach().to(dtype).requires_grad_() if has_qv else None
if V_colmajor:
v = rearrange(rearrange(v.detach(), "b s h d -> b h d s").contiguous(), "b h d s -> b s h d").requires_grad_()
out_ref, attn_ref = attention_ref(
q_ref,
k_ref,
v_ref,
None,
None,
causal=causal,
qv=qv_ref,
q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
window_size=window_size,
attention_chunk=attention_chunk,
softcap=softcap
)
out_pt, attn_pt = attention_ref(
q_ref,
k_ref,
v_ref,
None,
None,
causal=causal,
qv=qv_ref,
q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
window_size=window_size,
attention_chunk=attention_chunk,
softcap=softcap,
upcast=False,
reorder_ops=True,
intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
)
# qk = torch.einsum('bshd,bthd->bhst', q_ref, k_ref).float()
# if qv is not None:
# qk += torch.einsum('bshd,bthd->bhst', qv_ref, v_ref).float()
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# exp_sum = s_tmp.sum(-1)
# qk = torch.einsum('bthd,bshd->bhts', q_ref.float() / math.sqrt(d), k_ref.float())
# lse_ref = torch.logsumexp(qk, dim=-1)
# Numerical error if we just do any arithmetic on out_ref
fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item()
rtol = 2 if softcap == 0.0 else 3
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False]
num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1]
for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
out, lse = flash_attn3.flash_attn_func(
q,
k,
v,
causal=causal,
qv=qv,
q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
window_size=window_size,
attention_chunk=attention_chunk,
softcap=softcap,
pack_gqa=pack_gqa,
num_splits=num_splits
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
# if not causal:
# print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
# breakpoint()
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= rtol * (out_pt - out_ref).abs().max().item() + fwd_atol
if (
not DISABLE_BACKWARD
and dtype != torch.float8_e4m3fn
and not V_colmajor
and not has_qv
and not dv > 256
and not attention_chunk != 0
):
g = torch.randn_like(out)
do_o = ((g.float() * out.float()).sum(-1)).transpose(1, 2)
# import flash_attn_3_cuda
# dq, dk, dv, softmax_d, dq_accum, dk_accum, dv_accum = flash_attn_3_cuda.bwd(
# g,
# q,
# k,
# v,
# out,
# lse,
# None,
# None,
# None,
# d ** (-0.5),
# causal,
# window_size[0], window_size[1],
# softcap,
# deterministic,
# 0, # sm_margin
# )
dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
# print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
# assert (softmax_d - do_o).abs().max().item() <= 1e-5
# assert dq_accum.abs().max().item() == 0.0
# dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
# P = torch.softmax(qk, -1)
# dP = P * (dS - do_o.transpose(1, 2).unsqueeze(1))
# dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
# dV = torch.einsum('bhts,bthd->bshd', P, g.float())
# dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
# dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# breakpoint()
dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
assert (dq - dq_ref).abs().max().item() <= rtol * (dq_pt - dq_ref).abs().max().item() + dq_atol
dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
assert (dk - dk_ref).abs().max().item() <= rtol * (dk_pt - dk_ref).abs().max().item() + dk_atol
dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
assert (dv - dv_ref).abs().max().item() <= rtol * (dv_pt - dv_ref).abs().max().item() + dv_atol
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float16] if not DISABLE_FP16 else []) + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
# @pytest.mark.parametrize("has_qv", [False, True])
@pytest.mark.parametrize("has_qv", [False])
# @pytest.mark.parametrize("deterministic", [False, True])
@pytest.mark.parametrize("deterministic", [False])
@pytest.mark.parametrize("softcap", [0.0] + ([15.0] if not DISABLE_SOFTCAP else []))
# @pytest.mark.parametrize("softcap", [0.0])
@pytest.mark.parametrize("local", [False] + ([True] if not DISABLE_LOCAL else []))
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
@pytest.mark.parametrize("add_unused_qkv", [False, True])
# @pytest.mark.parametrize("add_unused_qkv", [True])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [64, 96, 128])
@pytest.mark.parametrize("d", COMPILED_HDIMS)
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 1),
(1, 3),
(2, 1),
(511, 1),
(3, 513),
(64, 128),
(128, 128),
(256, 256),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(307, 256),
(640, 128),
(512, 256),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(2048, 2048),
],
)
def test_flash_attn_varlen_output(
seqlen_q, seqlen_k, d, add_unused_qkv, causal, local, softcap, deterministic, has_qv, mha_type, dtype
):
device = "cuda"
# set seed
torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local))
# batch_size = 40
# nheads = 16
batch_size = 9 if seqlen_q <= 2048 else 2
nheads = 6
# batch_size = 2
# nheads = 1
nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
if dtype == torch.float8_e4m3fn:
dv_vals = [d]
attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if seqlen_q <= seqlen_k and not DISABLE_LOCAL else [0]
for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
if softcap > 0.0:
# Ensure the values of qk are at least within softcap range.
q_ref = (q_ref * softcap / 4).detach().requires_grad_()
q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
if has_qv:
qv_ref = torch.randn(batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
else:
qv_ref = None
# Put window_size after QKV randn so that window_size changes from test to test
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
if dtype == torch.float8_e4m3fn:
q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)]
else:
q_descale, k_descale, v_descale = None, None, None
q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)]
qv = qv_ref.detach() if has_qv else None
query_padding_mask = generate_random_padding_mask(
seqlen_q, batch_size, device, mode="random", zero_lengths=False
)
key_padding_mask = generate_random_padding_mask(
seqlen_k, batch_size, device, mode="random", zero_lengths=True
)
def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
if add_unused:
another_mask = generate_random_padding_mask(max_seq_len, bs, device)
attn_mask = torch.logical_and(padding_mask, another_mask)
unused_mask = torch.logical_xor(
torch.logical_or(padding_mask, another_mask), attn_mask
)
else:
attn_mask = padding_mask
unused_mask = None
return attn_mask, unused_mask
query_padding_mask, query_unused_mask = _gen_unused_masks(
query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device
)
key_padding_mask, key_unused_mask = _gen_unused_masks(
key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device
)
(
q_unpad,
k_unpad,
v_unpad,
qv_unpad,
cu_seqlens_q,
cu_seqlens_k,
seqused_q,
seqused_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
qv,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, qv=qv, kvpacked=False,
query_unused_mask=query_unused_mask, key_unused_mask=key_unused_mask)
q_unpad, k_unpad, v_unpad = [x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad)]
out_ref, attn_ref = attention_ref(
q_ref,
k_ref,
v_ref,
query_padding_mask,
key_padding_mask,
causal=causal,
qv=qv_ref,
q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
window_size=window_size,
attention_chunk=attention_chunk,
softcap=softcap
)
out_pt, attn_pt = attention_ref(
q_ref,
k_ref,
v_ref,
query_padding_mask,
key_padding_mask,
causal=causal,
qv=qv_ref,
q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
window_size=window_size,
attention_chunk=attention_chunk,
softcap=softcap,
upcast=False,
reorder_ops=True,
intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
)
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
if query_unused_mask is not None:
q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1")
# Numerical error if we just do any arithmetic on out_ref
fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item()
rtol = 2 if softcap == 0.0 else 3
pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False]
num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1]
for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
out_unpad, lse = flash_attn3.flash_attn_varlen_func(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
seqused_q=seqused_q,
seqused_k=seqused_k,
causal=causal,
qv=qv_unpad,
q_descale=q_descale,
k_descale=k_descale, v_descale=v_descale,
window_size=window_size,
attention_chunk=attention_chunk,
softcap=softcap,
)
out = output_pad_fn(out_unpad)
if query_unused_mask is not None:
out.masked_fill_(q_zero_masking, 0.0)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
# if not causal:
# print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
# breakpoint()
# Check that FlashAttention's numerical error is at most 3x the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= rtol * (out_pt - out_ref).abs().max().item() + fwd_atol
if (
not DISABLE_BACKWARD
and dtype != torch.float8_e4m3fn
and not has_qv
and not dv > 256
and not attention_chunk != 0
):
g_unpad = torch.randn_like(out_unpad)
do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2)
# import flash_attn_3_cuda
# dq_unpad, dk_unpad, dv_unpad, softmax_d, dq_accum, lse_log2 = flash_attn_3_cuda.bwd_varlen(
# g_unpad,
# q_unpad,
# k_unpad,
# v_unpad,
# out_unpad,
# lse,
# None,
# None,
# None,
# cu_seqlens_q,
# cu_seqlens_k,
# None, None,
# max_seqlen_q,
# max_seqlen_k,
# d ** (-0.5),
# causal,
# window_size[0], window_size[1],
# softcap,
# deterministic,
# 0, # sm_margin
# )
dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad(out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad)
dq = dq_pad_fn(dq_unpad)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
if key_unused_mask is not None:
k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1")
dk.masked_fill_(k_zero_masking, 0.0)
dv.masked_fill_(k_zero_masking, 0.0)
if query_unused_mask is not None:
dq.masked_fill_(q_zero_masking, 0.0)
# print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
# assert (softmax_d - do_o).abs().max().item() <= 1e-5
# assert dq_accum.abs().max().item() == 0.0
g = output_pad_fn(g_unpad)
# qk = torch.einsum('bthd,bshd->bhts', q / (d ** 0.5), k).float()
# qk = torch.masked_fill(qk, rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
# dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
# P = torch.softmax(qk, -1)
# dP = P * (dS - (g.float() * out.float()).sum(-1).transpose(1, 2).unsqueeze(-1))
# dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
# dV = torch.einsum('bhts,bthd->bshd', P, g.float())
# dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
# dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# breakpoint()
dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
assert (dq - dq_ref).abs().max().item() <= rtol * (dq_pt - dq_ref).abs().max().item() + dq_atol
dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
assert (dk - dk_ref).abs().max().item() <= rtol * (dk_pt - dk_ref).abs().max().item() + dk_atol
dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + (0 if softcap == 0 else 3e-4)
assert (dv - dv_ref).abs().max().item() <= rtol * (dv_pt - dv_ref).abs().max().item() + dv_atol
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else []))
# @pytest.mark.parametrize("new_kv", [True])
@pytest.mark.parametrize("causal,local", [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []))
# @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
# @pytest.mark.parametrize("causal,local", [(False, False)])
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True])
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("has_rotary_seqlens", [False, True])
# @pytest.mark.parametrize("has_rotary_seqlens", [False])
@pytest.mark.parametrize("rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False])
# @pytest.mark.parametrize("rotary_interleaved", [True])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0] if (not DISABLE_APPENDKV) and (apply_rotary_emb is not None) else [0.0])
# @pytest.mark.parametrize("rotary_fraction", [0.0])
@pytest.mark.parametrize("page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else []))
# @pytest.mark.parametrize("page_size", [None])
@pytest.mark.parametrize("has_leftpad", [False, True])
# @pytest.mark.parametrize("has_leftpad", [False])
@pytest.mark.parametrize("has_batch_idx", [False, True])
# @pytest.mark.parametrize("has_batch_idx", [False])
@pytest.mark.parametrize("varlen_q", [False, True])
# @pytest.mark.parametrize("varlen_q", [False])
# @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
@pytest.mark.parametrize("d", [128])
# @pytest.mark.parametrize("d", [192])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 128),
(1, 339),
(3, 1024),
(64, 800),
(64, 256),
(3, 799),
(64, 2048),
(16, 20000),
# (1, 128 * 1024),
# (16, 128 * 1024),
(128, 128),
(256, 512), # To test appending KV with more than 1 block
(2048, 3577), # Enough tile to test persistent scheduler
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_kvcache(
seqlen_q,
seqlen_k,
d,
varlen_q,
has_batch_idx,
has_leftpad,
page_size,
rotary_fraction,
rotary_interleaved,
has_rotary_seqlens,
seqlen_new_eq_seqlen_q,
causal,
local,
new_kv,
mha_type,
dtype,
):
if page_size is not None and seqlen_k % page_size != 0:
pytest.skip()
if seqlen_q > seqlen_k and new_kv:
pytest.skip()
if not new_kv and rotary_fraction > 0.0:
pytest.skip()
if rotary_fraction == 0.0 and has_rotary_seqlens:
pytest.skip()
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 5
# batch_size = 1
batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
nheads = 6
# nheads = 1
# rotary_dim must be a multiple of 16, and must be <= d
rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
assert nheads % nheads_k == 0
dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
if dtype == torch.float8_e4m3fn:
dv_vals = [d]
attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if (causal or local) and not DISABLE_LOCAL else [0]
for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
has_qv = d == 64 and dv >= 256
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
if has_qv:
qv = torch.randn(batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
else:
qv = None
if varlen_q:
query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(q, query_padding_mask)
output_pad_fn = lambda output_unpad: pad_input(
output_unpad, indices_q, batch_size, seqlen_q
)
qv_unpad = rearrange(qv, "b s ... -> (b s) ...")[indices_q] if has_qv else None
else:
query_padding_mask = None
q_unpad = q
qv_unpad = qv
cu_seqlens_q, max_seqlen_q = None, None
# Put window_size after QKV randn so that window_size changes from test to test
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
cu_seqlens_k_new = None
key_new_padding_mask = None
if new_kv:
k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
v = torch.randn(batch_size, seqlen_new, nheads_k, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
if varlen_q: # k & v are also varlen
key_new_padding_mask = generate_random_padding_mask(seqlen_new, batch_size, device, mode="random")
k_unpad, indices_k, cu_seqlens_k_new, *rest = unpad_input(k, key_new_padding_mask)
v_unpad, *rest = unpad_input(v, key_new_padding_mask)
else:
k_unpad, v_unpad = k, v
else:
k, v, k_unpad, v_unpad = None, None, None, None
if page_size is None:
k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, dv, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
page_table = None
else:
(
k_cache,
v_cache,
page_table,
k_cache_paged,
v_cache_paged,
num_blocks,
) = _generate_block_kvcache(
seqlen_k, page_size, batch_size_cache, nheads_k, d, dv, device, dtype, dtype_ref
)
cache_seqlens = torch.randint(
0 if new_kv else 1,
# If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
(
(seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
if new_kv
else (seqlen_k + 1)
),
(batch_size,),
dtype=torch.int32,
device=device,
)
if has_leftpad:
cache_leftpad = torch.cat([torch.randint(0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device)
if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device)
for i in range(batch_size)])
else:
cache_leftpad = None
if has_batch_idx:
cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
:batch_size
]
else:
cache_batch_idx = None
arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
if not new_kv:
key_padding_mask = arange < cache_seqlens_expanded
else:
k_new_seqlens = key_new_padding_mask.sum(-1, keepdims=True) if varlen_q else seqlen_new
key_padding_mask = arange < cache_seqlens_expanded + k_new_seqlens
if has_leftpad:
key_padding_mask = torch.logical_and(
key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k)
)
# cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
rotary_seqlens = cache_seqlens if not has_rotary_seqlens else cache_seqlens // 2
if rotary_dim > 0:
angle = (
torch.rand(
seqlen_k if page_size is None else num_blocks * page_size,
rotary_dim // 2,
device=device,
)
* 2
* math.pi
)
cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
if causal or local:
q_ro = apply_rotary_emb(
q, cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved
)
else:
q_ro = rearrange(
apply_rotary_emb(
rearrange(q, "b s h d -> b 1 (s h) d"),
cos,
sin,
seqlen_offsets=rotary_seqlens,
interleaved=rotary_interleaved,
),
"b 1 (s h) d -> b s h d",
s=seqlen_q,
)
# q_ro = q
k_ro = apply_rotary_emb(
k, cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved
)
else:
cos, sin = None, None
q_ro, k_ro = q, k
# k_cache[:, 64:] = -1
k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
if new_kv:
update_mask = torch.logical_and(
cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + k_new_seqlens
)
k_to_update = rearrange(k_ro, "b s ... -> (b s) ...")
v_to_update = rearrange(v, "b s ... -> (b s) ...")
if varlen_q:
k_to_update = k_to_update[indices_k]
v_to_update = v_to_update[indices_k]
k_cache_ref[update_mask] = k_to_update
v_cache_ref[update_mask] = v_to_update
k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
out_ref, _ = attention_ref(
q_ro,
k_cache_rep,
v_cache_rep,
query_padding_mask,
key_padding_mask,
causal=causal,
qv=qv,
window_size=window_size,
attention_chunk=attention_chunk,
key_leftpad=cache_leftpad,
)
out_pt, _ = attention_ref(
q_ro,
k_cache_rep,
v_cache_rep,
query_padding_mask,
key_padding_mask,
causal=causal,
qv=qv,
window_size=window_size,
attention_chunk=attention_chunk,
upcast=False,
reorder_ops=True,
key_leftpad=cache_leftpad,
intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None
)
q = q.to(dtype)
q_unpad = q_unpad.to(dtype) if varlen_q else None
k_cache = k_cache.to(dtype)
v_cache = v_cache.to(dtype)
k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None
v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None
k = k.to(dtype) if k is not None else None
v = v.to(dtype) if v is not None else None
k_unpad = k_unpad.to(dtype) if k_unpad is not None else None
v_unpad = v_unpad.to(dtype) if v_unpad is not None else None
qv = qv.to(dtype) if qv is not None else None
qv_unpad = qv_unpad.to(dtype) if (varlen_q and qv is not None) else None
cos = cos.to(dtype) if cos is not None else None
sin = sin.to(dtype) if sin is not None else None
k_cache_saved = k_cache.clone() if page_size is None else k_cache_paged.clone()
v_cache_saved = v_cache.clone() if page_size is None else v_cache_paged.clone()
num_splits_vals = [1, 0] if not DISABLE_SPLIT else [1]
precompute_metadata_vals = [False, True]
for num_splits, precompute_metadata in itertools.product(num_splits_vals, precompute_metadata_vals):
if precompute_metadata:
scheduler_metadata = flash_attn3.get_scheduler_metadata(
batch_size, max_seqlen_q if varlen_q else seqlen_q, seqlen_k, nheads, nheads_k, d,
cache_seqlens, q.dtype, headdim_v=dv, cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k_new=cu_seqlens_k_new, cache_leftpad=cache_leftpad,
max_seqlen_k_new=seqlen_new, page_size=page_size,
causal=causal, window_size=window_size, attention_chunk=attention_chunk,
num_splits=num_splits
)
else:
scheduler_metadata = None
# Repeat to test metadata reuse
for _ in range(1 if not precompute_metadata else 2):
if page_size is None:
k_cache.copy_(k_cache_saved)
v_cache.copy_(v_cache_saved)
else:
k_cache_paged.copy_(k_cache_saved)
v_cache_paged.copy_(v_cache_saved)
out, lse, *rest = flash_attn3.flash_attn_with_kvcache(
q if not varlen_q else q_unpad,
k_cache if page_size is None else k_cache_paged,
v_cache if page_size is None else v_cache_paged,
k if not new_kv or not varlen_q else k_unpad,
v if not new_kv or not varlen_q else v_unpad,
qv=qv if not varlen_q else qv_unpad,
rotary_cos=cos,
rotary_sin=sin,
cache_seqlens=cache_seqlens,
cache_batch_idx=cache_batch_idx,
cache_leftpad=cache_leftpad,
page_table=page_table,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k_new=cu_seqlens_k_new,
max_seqlen_q=max_seqlen_q,
rotary_seqlens=rotary_seqlens,
causal=causal,
window_size=window_size,
attention_chunk=attention_chunk,
rotary_interleaved=rotary_interleaved,
scheduler_metadata=scheduler_metadata,
num_splits=num_splits,
return_softmax_lse=True
)
if varlen_q:
out = output_pad_fn(out)
# out = flash_attn_with_kvcache(
# q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
# )
# out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
# qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
# lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
# probs = torch.softmax(qk, dim=-1)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
# breakpoint()
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
if new_kv:
if page_size is None:
k_cache_select = (
k_cache.to(dtype_ref) if not has_batch_idx else k_cache.to(dtype_ref)[cache_batch_idx]
)
v_cache_select = (
v_cache.to(dtype_ref) if not has_batch_idx else v_cache.to(dtype_ref)[cache_batch_idx]
)
else:
k_cache_select = rearrange(
k_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k].to(dtype_ref)
v_cache_select = rearrange(
v_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k].to(dtype_ref)
k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref)
v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref)
if dtype is not torch.float8_e4m3fn:
assert torch.equal(v_cache_select, v_cache_ref)
else:
assert torch.allclose(v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3)
# breakpoint()
# if rotary_dim == 0 and dtype is not torch.float8_e4m3fn:
if rotary_dim == 0:
assert torch.equal(k_cache_select, k_cache_ref)
else:
# if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3):
# breakpoint()
if dtype is not torch.float8_e4m3fn:
assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
else:
assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1)
mult = 4 if dtype == torch.float8_e4m3fn else 2
assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5
assert (out - out_ref).abs().mean().item() <= mult_mean * (out_pt - out_ref).abs().mean().item()
def _generate_block_kvcache(seqlen_k, page_size, batch_size, nheads_k, d, dv, device, dtype, dtype_ref):
num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3
k_cache_paged = torch.randn(
num_blocks, page_size, nheads_k, d, device=device, dtype=dtype_ref
).to(dtype).to(dtype_ref)
v_cache_paged = torch.randn(
num_blocks, page_size, nheads_k, dv, device=device, dtype=dtype_ref
).to(dtype).to(dtype_ref)
page_table = rearrange(
torch.randperm(num_blocks, dtype=torch.int32, device=device),
"(b nblocks) -> b nblocks",
b=batch_size,
)
k_cache = rearrange(
k_cache_paged[page_table.flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
v_cache = rearrange(
v_cache_paged[page_table.flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize('d', [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(64, 8192),
],
)
def test_flash_attn_cluster(seqlen_q, seqlen_k, d, causal, dtype):
device = "cuda"
torch.random.manual_seed(0)
batch_size = 2
nheads = 16
nheads_kv = 4
# There was a bug where this would cause "unspecified launch failure" due to Cluster
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype)
v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype)
for _ in range(100):
flash_attn3.flash_attn_func(q, k, v, causal=causal)
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128])
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [80])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(239, 1),
(3, 799),
(799, 3),
(1024, 128),
(97, 97),
(128, 128),
(200, 200),
(256, 256),
(257, 257),
(384, 384),
(512, 512),
(768, 768),
(1024, 1024),
(2048, 2048),
],
)
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, causal, dtype):
device = "cuda"
# set seed
torch.random.manual_seed(0)
# Simulate under memory load
dummy = torch.empty(70 * 1024 ** 3, dtype=torch.uint8, device=device)
batch_size = 60 # Sometimes we need large batch size for the race conditions to trigger
nheads = 4
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
torch.random.manual_seed(42)
out0, lse0 = flash_attn3.flash_attn_func(q, k, v, causal=causal)
g = torch.randn_like(out0)
dq0, dk0, dv0 = torch.autograd.grad(out0, (q, k, v), g)
# Numerical error if we just do any arithmetic on dq
dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
for i in range(1000):
torch.random.manual_seed(42)
out, lse = flash_attn3.flash_attn_func(q, k, v, causal=causal)
assert torch.equal(out, out0)
assert torch.equal(lse, lse0)
dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
if not dq_equal:
print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
# breakpoint()
assert torch.equal(dv, dv0)
assert torch.equal(dk, dk0)
assert dq_equal
def attention_combine_ref(out_partial, lse_partial):
"""
out_partial: (num_splits, batch_size, seqlen, nheads, d)
lse_partial: (num_splits, batch_size, nheads, seqlen)
"""
lse = torch.logsumexp(lse_partial, dim=0)
scale = torch.exp(lse_partial - lse)
scale = torch.where(torch.isinf(scale) | torch.isnan(scale), torch.zeros_like(scale), scale)
out = (scale.unsqueeze(-1) * out_partial).sum(0)
return out, lse
@pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float32])
# @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
@pytest.mark.parametrize("d", [64, 96, 128, 192, 256, 512])
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize("seqlen", [1, 2, 3, 32, 64, 256, 113, 108, 640, 1024])
# @pytest.mark.parametrize("seqlen", [12, 32, 64, 256, 112, 108, 640, 1024, 2048, 8192])
# @pytest.mark.parametrize("seqlen", [15])
@pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 17, 32, 55, 97, 133])
# @pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 11])
# @pytest.mark.parametrize("num_splits", [128])
def test_flash_attn_combine(num_splits, seqlen, d, dtype):
if DISABLE_SPLIT:
pytest.skip()
device = "cuda"
# set seed
torch.random.manual_seed(1)
batch_size = 5
nheads = 16
# batch_size = 1
# nheads = 1
out_partial = torch.randn(num_splits * 2, batch_size, nheads, seqlen, d, device=device, dtype=torch.float32).transpose(2, 3)[:num_splits] # To test non-contiguous tensor
lse_partial = torch.randn(num_splits, batch_size, nheads * 2, seqlen, device=device, dtype=torch.float32).transpose(-1, -2)[:, :, :, :nheads] # To test non-contiguous tensor
# To test short-circuiting based on num_splits
lse_partial[num_splits // 2:, :batch_size // 3] = -float("inf")
out, lse = flash_attn3.flash_attn_combine(out_partial, lse_partial, out_dtype=dtype)
out_ref, lse_ref = attention_combine_ref(out_partial, lse_partial)
out_pt = out_ref.to(dtype)
print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
print(f"LSE mean diff: {(lse - lse_ref).abs().mean().item()}")
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
# breakpoint()
assert torch.allclose(lse, lse_ref, atol=1e-5, rtol=1e-5)
multiple = 2
assert ((out - out_ref).abs().max().item() <= multiple * (out_pt - out_ref).abs().max().item()) or torch.allclose(out, out_pt, atol=1e-5, rtol=1e-5)
# from flash_attn.utils.benchmark import pytorch_profiler
# # pytorch_profiler(torch.sum, lse_partial)
# pytorch_profiler(flash_attn_combine, out_partial, lse_partial)
# pytorch_profiler(torch.sum, out_partial)
def test_flash3_bw_compatibility() -> None:
# Let's try to always stay backward compatible! This will make life easier
# for downstream libaries, users, and exported models.
# 1/ Instead of removing arguments, error out if their value is no longer supported
# 2/ When adding arguments, add them at the end with a default value
assert ops.fwd.default._schema.is_backward_compatible_with(parse_schema(
add_op_namespace_prefix("fwd(Tensor q, Tensor k, Tensor v, Tensor(k_new!)? k_new=None, "
"Tensor(v_new!)? v_new=None, Tensor? q_v=None, Tensor(out!)? out=None, "
"Tensor? cu_seqlens_q=None, Tensor? cu_seqlens_k=None, "
"Tensor? cu_seqlens_k_new=None, Tensor? seqused_q=None, Tensor? seqused_k=None, "
"int? max_seqlen_q=None, int? max_seqlen_k=None, Tensor? page_table=None, "
"Tensor? kv_batch_idx=None, Tensor? leftpad_k=None, Tensor? rotary_cos=None, Tensor? rotary_sin=None, "
"Tensor? seqlens_rotary=None, Tensor? q_descale=None, Tensor? k_descale=None, Tensor? v_descale=None, "
"float? softmax_scale=None, bool is_causal=False, int window_size_left=-1, int window_size_right=-1, "
"int attention_chunk=0, float softcap=0., bool is_rotary_interleaved=False, "
"Tensor? scheduler_metadata=None, int num_splits=0, bool? pack_gqa=None, int sm_margin=0) "
"-> (Tensor(out!), Tensor, Tensor, Tensor)"
)))
assert ops.bwd.default._schema.is_backward_compatible_with(parse_schema(
add_op_namespace_prefix("bwd(Tensor dout, Tensor q, Tensor k, Tensor v, Tensor out, Tensor softmax_lse, "
"Tensor(dq!)? dq=None, Tensor(dk!)? dk=None, Tensor(dv!)? dv=None, Tensor? cu_seqlens_q=None, "
"Tensor? cu_seqlens_k=None, Tensor? seqused_q=None, Tensor? seqused_k=None, int? max_seqlen_q=None, "
"int? max_seqlen_k=None, float? softmax_scale=None, bool is_causal=False, int window_size_left=-1, "
"int window_size_right=-1, float softcap=0., bool deterministic=False, int sm_margin=0) "
"-> (Tensor(dq!), Tensor(dk!), Tensor(dv!), Tensor, Tensor, Tensor, Tensor, Tensor)"
)))
assert ops.fwd_combine.default._schema.is_backward_compatible_with(parse_schema(
add_op_namespace_prefix("fwd_combine(Tensor out_partial, Tensor lse_partial, Tensor(out!)? out=None, "
"ScalarType? out_dtype=None) -> (Tensor(out!), Tensor)"
)))
assert ops.get_scheduler_metadata.default._schema.is_backward_compatible_with(parse_schema(
add_op_namespace_prefix("get_scheduler_metadata(int batch_size, int max_seqlen_q, int max_seqlen_k, "
"int num_heads, int num_heads_k, int headdim, int headdim_v, ScalarType qkv_dtype, Tensor seqused_k, "
"Tensor? cu_seqlens_q=None, Tensor? cu_seqlens_k=None, Tensor? cu_seqlens_k_new=None, "
"Tensor? seqused_q=None, Tensor? leftpad_k=None, int? page_size=None, int max_seqlen_k_new=0, "
"bool is_causal=False, int window_size_left=-1, int window_size_right=-1, "
"int attention_chunk=0, bool has_softcap=False, int num_splits=0, bool? pack_gqa=None, "
"int sm_margin=0) -> Tensor"
)))