File size: 25,126 Bytes
49d887a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
---

library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7999
- loss:MultipleNegativesRankingLoss
base_model: medicalai/ClinicalBERT
metrics:
- cosine_accuracy
widget:
- source_sentence: pt,dressing,pi,surgery,2 weeks,o,ozing,regular,dressing,weight,111.
    800,height,179. 000,temperature,97. 700,pulse,88. 000,res,19. 000 bp,sy,sto,145.
    000 bp,dia,sto,82. 000 spo,2,:,99,cap,blood sugar,ja,undice,ec,no past medical
    history,no past medical history,no past medical history,no past medical history,no
    past medical history,no past medical history,no past,no,no,no past,no,past,no,no,no,no,no,no,no,no,no,no,no,stable,stable,stable,stable,stable,stable,stable,stable,stable,stable,normal,no,surgical
    history,no,surgical history,no,surgical history,no,no
  sentences:
  - Acne vulgaris
  - Encounter for change or removal of surgical wound dressing
  - Irritant contact dermatitis due to detergents
- source_sentence: 'fa,dubai,arab emirates,cardiac assessment,chest,pain,nausea,mild,dizzy,sleep,clinic,pulse,70,res,18,res,normal,sao,:,98,air

    time,00 : 39 : 00,bp,140 / 100,cap,< 2 sec,temperature,36,>,3 reacts,right,>,3

    reacts,total,gcs,15,car,mild'
  sentences:
  - Dizziness and giddiness
  - Pruritus, unspecified
  - Acute gastritis without bleeding
- source_sentence: low,back,pain,1,no,sp,fine,lower back,moderate,1 month,no,diseases,no,no,no,no,no,no,single,normal,no,no,no,normal,normal,normal,normal,cvs,cv,normal,abnormal,-
    genito - urinary,normal,systems _ cns - cns,normal,musc,mu,normal,ps,normal,systems,endo
    - end,normal,normal,haemo,haem,normal,low,back,pain,1 month
  sentences:
  - Headache
  - Muscle spasm of back
  - Other chest pain
- source_sentence: 'fa,ap,arab,mobility,knee assessment,ambula,tory,c,/,o,pain,swelling,right,cold

    pack,crepebanda,v,pt,transfer,pulse,68r,16,res,normal,sao,: 100,air time,07 :

    29 : 00,bp,112 / 78,cap,< 2 sec,4 reacts,right,-,>,3,reacts,gcs,15,pain,4,blood,car

    accident,twisted,right ankle'
  sentences:
  - Unspecified injury of right ankle, initial encounter
  - Other spondylosis with radiculopathy, lumbosacral region
  - Right upper quadrant pain
- source_sentence: irregular,period,few months,moderate,few months ago,none,weight,90.
    000,height,163. 000,temperature,98. 600,pulse,82. 000,respiration,19. 000 bp,systolic,110.
    000 bp,diastolic,70. 000,sp,o,2,:,99,cap,blood sugar,ja,und,ice,ec,abd,an,l,girth,head,chest,ch
    ida ch vitamin d deficiency,polycystic ovary syndrome,ch ida ch vitamin d deficiency,polycystic
    ovary syndrome,ch,ida ch vitamin d deficiency,polycystic ovary syndrome,ch,ida
    ch vitamin d deficiency,polycystic ovary syndrome,no,no family,no,no,nation,grade
    11,grade 11,grade 11,grade 11,no,no,no,no,normal,normal,normal,normal,_ cvs,cv,normal,normal,irregular
    period,cns,cn,normal,mu,normal,normal,normal,normal,normal,normal,irregular period
  sentences:
  - Pain in right hip
  - Radial styloid tenosynovitis [de Quervain]
  - Irregular menstruation, unspecified
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on medicalai/ClinicalBERT
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: ai job validation
      type: ai-job-validation
    metrics:
    - type: cosine_accuracy
      value: 0.9429429173469543
      name: Cosine Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: ai job test
      type: ai-job-test
    metrics:
    - type: cosine_accuracy
      value: 0.9290709495544434
      name: Cosine Accuracy
---


# SentenceTransformer based on medicalai/ClinicalBERT

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the parquet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) <!-- at revision 3bb5faa9f33458dd7801549e88767c3b23264942 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - parquet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("khaled-omar/distilroberta-ai-job-embeddings")

# Run inference

sentences = [

    'irregular,period,few months,moderate,few months ago,none,weight,90. 000,height,163. 000,temperature,98. 600,pulse,82. 000,respiration,19. 000 bp,systolic,110. 000 bp,diastolic,70. 000,sp,o,2,:,99,cap,blood sugar,ja,und,ice,ec,abd,an,l,girth,head,chest,ch ida ch vitamin d deficiency,polycystic ovary syndrome,ch ida ch vitamin d deficiency,polycystic ovary syndrome,ch,ida ch vitamin d deficiency,polycystic ovary syndrome,ch,ida ch vitamin d deficiency,polycystic ovary syndrome,no,no family,no,no,nation,grade 11,grade 11,grade 11,grade 11,no,no,no,no,normal,normal,normal,normal,_ cvs,cv,normal,normal,irregular period,cns,cn,normal,mu,normal,normal,normal,normal,normal,normal,irregular period',

    'Irregular menstruation, unspecified',

    'Radial styloid tenosynovitis [de Quervain]',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Datasets: `ai-job-validation` and `ai-job-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | ai-job-validation | ai-job-test |
|:--------------------|:------------------|:------------|
| **cosine_accuracy** | **0.9429**        | **0.9291**  |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### parquet



* Dataset: parquet

* Size: 7,999 training samples

* Columns: <code>Entities</code>, <code>PosLongDesc</code>, and <code>NegLongDesc</code>

* Approximate statistics based on the first 1000 samples:

  |         | Entities                                                                            | PosLongDesc                                                                       | NegLongDesc                                                                       |

  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                              | string                                                                            | string                                                                            |

  | details | <ul><li>min: 3 tokens</li><li>mean: 155.39 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.62 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.35 tokens</li><li>max: 31 tokens</li></ul> |

* Samples:

  | Entities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PosLongDesc                                                                                             | NegLongDesc                                                                                        |

  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|

  | <code>it,chiness,since 3 months,it,chiness,since,3 months,weight,90. 100,height,178. 000,temperature,98. 060,pulse,84. 000,respiration,0. 000 bp,sy,sto,122. 000 bp,dia,69. 000,sp,o,:,99,cap,blood sugar,ja,undice,ec,abd,an,rth,nonsignificant,nonsignificant,nonsignifican,t,no family,nonsignificant family,nonsignificant family,nonsignificant,no relevant family history,yes,married, smoker, carpenter,married, smoker, carpenter social,married, smoker, carpenter social history,nonsignificant,nonsignificant,nonsignificant,it,chiness,3 months,treatment</code> | <code>Rash and other nonspecific skin eruption</code>                                                   | <code>Acute nasopharyngitis [common cold]</code>                                                   |

  | <code>amc,dubai,united arab emirates,uma,pa,gut,hari,val,electrocard,gram,pt,amc,sitting,coherent,w /,can,nula,bra,chia,vital,85,18,res,normal,sao,100,air time,17,: 51 : 34,bp,120 / 81,cap,<,2,sec,temperature,> 4 reacts,>,4,reacts,total,gcs,15,pain,0,blood glucose,102,car,accident,drug overdose,intentional</code>                                                                                                                                                                                                                                                   | <code>Epileptic seizures related to external causes, not intractable, without status epilepticus</code> | <code>COVID-19</code>                                                                              |

  | <code>amc gate,dubai,united arab emirates,ssi,test,airports,dubai,concourse,ent assessment,throat,transported,endorsed,pulse :,77r,14,res,normal %,sao,2 :,100,air time,05 :,26,:,00,bp,118 / 69,cap,<,2,sec,temperature,36. 7,pupil,left,>,4,reacts,right,>,4,reacts,gcs,15,pain,2,blood glucose,96,car,accident,no,throatpain</code>                                                                                                                                                                                                                                       | <code>Pain in throat</code>                                                                             | <code>Encounter for observation for suspected exposure to other biological agents ruled out</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Evaluation Dataset



#### parquet



* Dataset: parquet

* Size: 999 evaluation samples

* Columns: <code>Entities</code>, <code>PosLongDesc</code>, and <code>NegLongDesc</code>

* Approximate statistics based on the first 999 samples:

  |         | Entities                                                                            | PosLongDesc                                                                       | NegLongDesc                                                                       |

  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                              | string                                                                            | string                                                                            |

  | details | <ul><li>min: 4 tokens</li><li>mean: 154.58 tokens</li><li>max: 470 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.61 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.12 tokens</li><li>max: 35 tokens</li></ul> |

* Samples:

  | Entities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PosLongDesc                                                                   | NegLongDesc                                                 |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------|:------------------------------------------------------------|

  | <code>it,chy,redness,3 days,both,it,ching,mild,moderate,3 days,weight,50. 200,height,143. 000,temperature,98. 240,pulse,78. 000,respiration,0. 000 bp,systolic,0. 000 bp,dia,sto,lic,0. 000,sp,o,2,:,99,cap,blood sugar,ja,undice,ec,abd,no past medical history,no past medical history,unknown family medical history,negative family,chronic disease,no diabetic mellitus,no hypertention,negative family,chronic disease,no diabetic mellitus,no hypertention,no,7 years and,7 months,7 years,7 months,no,removal,int,removal,int,red,it,chy,it,chy,redness,3 days</code> | <code>Acute atopic conjunctivitis, bilateral</code>                           | <code>Deficiency of other specified B group vitamins</code> |

  | <code>pi,mples,pustules,plus,minus,cyst,both side,of the face,too,it,ching,skin,4,pi,notice,increase,laser removal,facial,expose,sun,pust,cyst,it,weight,52,.,800,height,159. 000,temperature,98. 100,pulse,93. 000,res,0. 000 bp,sy,sto,99. 000 bp,sto,60. 000,sp,o,98,cap,blood sugar,ja,undice,ec,no,no,ro,course,ro,not,course,no diabetic mellitus,no,les,no diabetic,mellit,us,no,les,basic,nation,nation,13,years,months,15 years,11 months,old,pu,ules,plus,cyst,side</code>                                                                                          | <code>Local infection of the skin and subcutaneous tissue, unspecified</code> | <code>Inflammatory polyarthropathy</code>                   |

  | <code>respiratory rate,sp,pain,sy,lic,bp,mm,dia,bp,mm,height,weight,00 kg,repeat,prescription</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>Menopausal and female climacteric states</code>                         | <code>COVID-19</code>                                       |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: False

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch | Step | Training Loss | Validation Loss | ai-job-validation_cosine_accuracy | ai-job-test_cosine_accuracy |

|:-----:|:----:|:-------------:|:---------------:|:---------------------------------:|:---------------------------:|

| -1    | -1   | -             | -               | 0.5495                            | -                           |

| 0.2   | 100  | 2.8729        | 1.8172          | 0.8789                            | -                           |

| 0.4   | 200  | 2.085         | 1.4398          | 0.9259                            | -                           |

| 0.6   | 300  | 1.8233        | 1.3448          | 0.9339                            | -                           |

| 0.8   | 400  | 1.6871        | 1.2579          | 0.9409                            | -                           |

| 1.0   | 500  | 1.4881        | 1.2327          | 0.9429                            | -                           |

| -1    | -1   | -             | -               | 0.9429                            | 0.9291                      |





### Framework Versions

- Python: 3.11.4

- Sentence Transformers: 3.4.1

- Transformers: 4.41.2

- PyTorch: 2.3.1+cpu

- Accelerate: 1.3.0

- Datasets: 3.2.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->