๐Ÿฉบ CheXNet-MedScan-Report-Gen

CheXNet-MedScan-Report-Gen is an image captioning model for generating diagnostic text reports from chest X-ray images. It combines the power of a pretrained CheXNet encoder (based on DenseNet121) and a bidirectional LSTM decoder to produce sequence-based textual descriptions.


๐Ÿง  Model Architecture

  • Encoder: DenseNet121 (CheXNet) with classifier removed
  • Decoder: Bidirectional LSTM with dropout
  • Feature dimension: 1024
  • Embedding dimension: 256
  • Hidden dimension: 512
  • Vocabulary size: 5000
  • Dropout: 0.5

๐Ÿ”ง Usage

You can load the model using the Hugging Face Transformers library:

from transformers import AutoModel, AutoConfig

config = AutoConfig.from_pretrained("khalednabawi11/Chexnet-MedScan-Report-Gen", trust_remote_code=True)
model = AutoModel.from_pretrained("khalednabawi11/Chexnet-MedScan-Report-Gen", config=config, trust_remote_code=True)
Downloads last month
160
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support