๐ฉบ CheXNet-MedScan-Report-Gen
CheXNet-MedScan-Report-Gen is an image captioning model for generating diagnostic text reports from chest X-ray images. It combines the power of a pretrained CheXNet encoder (based on DenseNet121) and a bidirectional LSTM decoder to produce sequence-based textual descriptions.
๐ง Model Architecture
- Encoder: DenseNet121 (CheXNet) with classifier removed
- Decoder: Bidirectional LSTM with dropout
- Feature dimension: 1024
- Embedding dimension: 256
- Hidden dimension: 512
- Vocabulary size: 5000
- Dropout: 0.5
๐ง Usage
You can load the model using the Hugging Face Transformers library:
from transformers import AutoModel, AutoConfig
config = AutoConfig.from_pretrained("khalednabawi11/Chexnet-MedScan-Report-Gen", trust_remote_code=True)
model = AutoModel.from_pretrained("khalednabawi11/Chexnet-MedScan-Report-Gen", config=config, trust_remote_code=True)
- Downloads last month
- 160
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support