File size: 1,014 Bytes
b81fe05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a960399
b81fe05
a960399
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
---
datasets:
- hongrui/mimic_chest_xray_v_1
---
# 🩺 CheXNet-MedScan-Report-Gen

**CheXNet-MedScan-Report-Gen** is an image captioning model for generating diagnostic text reports from chest X-ray images. It combines the power of a pretrained CheXNet encoder (based on DenseNet121) and a bidirectional LSTM decoder to produce sequence-based textual descriptions.

---

## 🧠 Model Architecture

- **Encoder:** DenseNet121 (CheXNet) with classifier removed
- **Decoder:** Bidirectional LSTM with dropout
- **Feature dimension:** 1024
- **Embedding dimension:** 256
- **Hidden dimension:** 512
- **Vocabulary size:** 5000
- **Dropout:** 0.5

---

## 🔧 Usage

You can load the model using the Hugging Face Transformers library:

```python
from transformers import AutoModel, AutoConfig

config = AutoConfig.from_pretrained("khalednabawi11/Chexnet-MedScan-Report-Gen", trust_remote_code=True)
model = AutoModel.from_pretrained("khalednabawi11/Chexnet-MedScan-Report-Gen", config=config, trust_remote_code=True)