Az-Language
Collection
3 items
•
Updated
This model is a fine-tuned version of unsloth/Qwen3-1.7B
on a translated version of the Alpaca Stanford dataset in Azerbaijani language.
The model is instruction-tuned to better follow prompts and generate relevant responses in Azerbaijani.
Use the code below to get started with the model.
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",)
base_model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen3-1.7B",
device_map={"": 0}
)
model = PeftModel.from_pretrained(base_model,"khazarai/AzQwen")
question = "Bir sifət əlavə edərək aşağıdakı cümləni yenidən yazın. Tələbə mürəkkəb anlayışları anlaya bildi. "
messages = [
{"role" : "user", "content" : question}
]
text = tokenizer.apply_chat_template(
messages,
tokenize = False,
add_generation_prompt = True,
enable_thinking = False,
)
from transformers import TextStreamer
_ = model.generate(
**tokenizer(text, return_tensors = "pt").to("cuda"),
max_new_tokens = 2048,
temperature = 0.7,
top_p = 0.8,
top_k = 20,
streamer = TextStreamer(tokenizer, skip_prompt = True),
)
For pipeline:
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B")
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Qwen3-1.7B")
model = PeftModel.from_pretrained(base_model, "khazarai/AzQwen")
question ="""
Bir sifət əlavə edərək aşağıdakı cümləni yenidən yazın. Tələbə mürəkkəb anlayışları anlaya bildi.
"""
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [
{"role": "user", "content": question}
]
pipe(messages)