Az-Language
Collection
3 items
•
Updated
A Lightweight Language Model
Nizami-1.7B is a fine-tuned version of Qwen3-1.7B for academic-style comprehension and reasoning in Azerbaijani. It was trained on a curated dataset of 7,000 examples from historical, legal, philosophical, and social science texts.
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",)
base_model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen3-1.7B",
device_map={"": 0}
)
model = PeftModel.from_pretrained(base_model,"khazarai/Nizami-1.7B")
question = """
Əldə olunan arxeoloji qazıntı materiallarına əsasən, Eneolit dövründə Azərbaycanda metalın ilk istifadəsi ilə bağlı hansı konkret obyektlər tapılmışdır və bu obyektlər həmin dövrdə cəmiyyətin sosial strukturunun inkişafına necə təsir etmişdir? Əlavə olaraq, həmin dövrdə metallurgiya və metalişləmə sənətkarlığının inkişafının iqtisadi və mədəni aspektləri haqqında nə deyə bilərsiniz?
"""
messages = [
{"role" : "user", "content" : question}
]
text = tokenizer.apply_chat_template(
messages,
tokenize = False,
add_generation_prompt = True,
enable_thinking = False,
)
from transformers import TextStreamer
_ = model.generate(
**tokenizer(text, return_tensors = "pt").to("cuda"),
max_new_tokens = 1800,
temperature = 0.7,
top_p = 0.8,
top_k = 20,
streamer = TextStreamer(tokenizer, skip_prompt = True),
)
For pipeline:
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B")
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Qwen3-1.7B")
model = PeftModel.from_pretrained(base_model, "khazarai/Nizami-1.7B")
question ="""
Əldə olunan arxeoloji qazıntı materiallarına əsasən, Eneolit dövründə Azərbaycanda metalın ilk istifadəsi ilə bağlı hansı konkret obyektlər tapılmışdır və bu obyektlər həmin dövrdə cəmiyyətin sosial strukturunun inkişafına necə təsir etmişdir? Əlavə olaraq, həmin dövrdə metallurgiya və metalişləmə sənətkarlığının inkişafının iqtisadi və mədəni aspektləri haqqında nə deyə bilərsiniz?
"""
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [
{"role": "user", "content": question}
]
pipe(messages)
Dataset: az-llm/az_academic_qa-v1.0
Description: A 7,000-example dataset for academic-style comprehension and reasoning in Azerbaijani. Each example contains a long chunk_text, a high-complexity question, a detailed structured answer, and a tone tag (e.g., Formal, Open-ended). Sourced from historical, legal, philosophical, and social science texts.
Fields:
License: CC-BY 4.0
Size: 7,000 entries
Avg. tokens per entry: ~400
Version: 1.0
Language: Azerbaijani