See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - c57c248ef42df608_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c57c248ef42df608_train_data.json
  type:
    field_input: ''
    field_instruction: Human
    field_output: Assistant
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kk-aivio/12dc3dae-9f66-41db-bf1f-25b0534578a8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/c57c248ef42df608_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 97207aed-5c11-4a04-856c-e40fb3d0ea25
wandb_project: Birthday-SN56-11-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 97207aed-5c11-4a04-856c-e40fb3d0ea25
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
12dc3dae-9f66-41db-bf1f-25b0534578a8
This model is a fine-tuned version of unsloth/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 42
 - gradient_accumulation_steps: 4
 - total_train_batch_size: 8
 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 10
 - training_steps: 10
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.0 | 0.0002 | 1 | nan | 
| 0.0 | 0.0005 | 3 | nan | 
| 0.1394 | 0.0009 | 6 | nan | 
| 0.0 | 0.0014 | 9 | nan | 
Framework versions
- PEFT 0.13.2
 - Transformers 4.46.0
 - Pytorch 2.5.0+cu124
 - Datasets 3.0.1
 - Tokenizers 0.20.1
 
- Downloads last month
 - -
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support