ModernBERT Embed base fitness health Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka")
sentences = [
'facilitate publication;\n•\u2009\x07Mobilise academic expertise for \ndeveloping training programmes and \nmobilising trainers.\n\t Weigh in on the debate around issues \nrelated to rehabilitation promotion and funding, promote best practices to \ninfluence policies that favour access \nto rehabilitation services and thereby \nmove toward advocacy actions.\n48\nUsers,\nDisabled people’s\norganisations\nService\nproviders\nDecision-makers User \ngroups\nLocal\nauthorities\nMinistry of \nHealth, Ministry \nof Social Action,\netc.\nUnited Nations \n(WHO, etc.)\nHospitals, \nReference\nrehabilitation centre\nProfessional \nassociations\nService provider groups\nTraining institutes\nCommunity- \nbased Services\nFederation\nand national\n associations\nHospital, \nHealth \ncare centres Network: actors that can be mobilised for physical \nand functional rehabilitation\nInternational\nNational\nLocal\nInstitutional donors\nFacilitation organisations* * \x07Organisations (IOs, NGOs, etc.), agencies, universities and research centres that facilitate the existence of physical \nand functional rehabilitation via national or international projects.\nInternational \n consortia (IDDC, etc.)\n International\n networks \n (CBR, WCPT, \n WFOT, ISPO,\nFATO, etc.)\nLevels of intervention © Handicap International, 2013\n \n \n49\n\xa0Intervention.\n\xa0modalities\u200a.\nThe Unit has technical resources specifically \npositioned to be able to reach the maximum',
'training programmes for rehabilitation professionals',
'risks of yo-yo dieting and heart disease',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4789 |
cosine_accuracy@3 |
0.4789 |
cosine_accuracy@5 |
0.4789 |
cosine_accuracy@10 |
0.5219 |
cosine_precision@1 |
0.4789 |
cosine_precision@3 |
0.4789 |
cosine_precision@5 |
0.4789 |
cosine_precision@10 |
0.4395 |
cosine_recall@1 |
0.0601 |
cosine_recall@3 |
0.1802 |
cosine_recall@5 |
0.3003 |
cosine_recall@10 |
0.5134 |
cosine_ndcg@10 |
0.499 |
cosine_mrr@10 |
0.4861 |
cosine_map@100 |
0.5681 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4742 |
cosine_accuracy@3 |
0.4742 |
cosine_accuracy@5 |
0.4742 |
cosine_accuracy@10 |
0.5141 |
cosine_precision@1 |
0.4742 |
cosine_precision@3 |
0.4742 |
cosine_precision@5 |
0.4742 |
cosine_precision@10 |
0.4362 |
cosine_recall@1 |
0.059 |
cosine_recall@3 |
0.1769 |
cosine_recall@5 |
0.2948 |
cosine_recall@10 |
0.5078 |
cosine_ndcg@10 |
0.4934 |
cosine_mrr@10 |
0.4808 |
cosine_map@100 |
0.5632 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4555 |
cosine_accuracy@3 |
0.4555 |
cosine_accuracy@5 |
0.4555 |
cosine_accuracy@10 |
0.4969 |
cosine_precision@1 |
0.4555 |
cosine_precision@3 |
0.4555 |
cosine_precision@5 |
0.4555 |
cosine_precision@10 |
0.4188 |
cosine_recall@1 |
0.057 |
cosine_recall@3 |
0.1711 |
cosine_recall@5 |
0.2851 |
cosine_recall@10 |
0.4882 |
cosine_ndcg@10 |
0.4746 |
cosine_mrr@10 |
0.4624 |
cosine_map@100 |
0.5446 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4352 |
cosine_accuracy@3 |
0.4352 |
cosine_accuracy@5 |
0.4352 |
cosine_accuracy@10 |
0.4727 |
cosine_precision@1 |
0.4352 |
cosine_precision@3 |
0.4352 |
cosine_precision@5 |
0.4352 |
cosine_precision@10 |
0.3988 |
cosine_recall@1 |
0.0545 |
cosine_recall@3 |
0.1636 |
cosine_recall@5 |
0.2726 |
cosine_recall@10 |
0.4639 |
cosine_ndcg@10 |
0.4522 |
cosine_mrr@10 |
0.4414 |
cosine_map@100 |
0.5208 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3945 |
cosine_accuracy@3 |
0.3945 |
cosine_accuracy@5 |
0.3945 |
cosine_accuracy@10 |
0.4297 |
cosine_precision@1 |
0.3945 |
cosine_precision@3 |
0.3945 |
cosine_precision@5 |
0.3945 |
cosine_precision@10 |
0.3598 |
cosine_recall@1 |
0.0499 |
cosine_recall@3 |
0.1497 |
cosine_recall@5 |
0.2495 |
cosine_recall@10 |
0.4224 |
cosine_ndcg@10 |
0.4109 |
cosine_mrr@10 |
0.4004 |
cosine_map@100 |
0.4763 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 11,518 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 239.56 tokens
- max: 410 tokens
|
- min: 5 tokens
- mean: 10.8 tokens
- max: 26 tokens
|
- Samples:
positive |
anchor |
values and preferences among older people in relation to exercise, noting that older people valued the outcomes of exercise for maintaining health. They judged that the evidence for older people was likely to be relevant to all adults and agreed there was likely to be some uncertainty or variability with respect to people’s values and preferences for exercise and its outcomes. Some GDG members suggested that given reasonably consistent benefit and very little harms, there would be no important uncertainty or variability regarding people’s values on the outcomes of exercise. In the absence of direct qualitative evidence, the GDG judged from their own experience that resource requirements for structured exercise programmes would vary by country and setting, but in some settings might be associated with moderate costs (for structured exercise programmes, compared with self-managed physical activity). The GDG noted that costs could also vary according to the modality of ... |
exercise preferences and outcomes variability among adults |
ICRC, ICRC Hospital Design and Rehabilitation Guidelines, Vol. 1: Models Of Care, ICRC, Geneva, 2022: https://shop. icrc.org/icrc-hospital-design-and-rehabilitation-guidelines-volume-1-models-of-care-print-en.html |
ICRC rehabilitation guidelines 2022 |
fitness training is guided by a health worker or (if feasible) performed self-directed by the patient following education and advice. Metacognitive training Metacognitive training aims to improve social functioning through reducing cognitive biases/psychotic symptoms (e.g. delusion, impaired self-awareness or insight). Metacognitive training is usually provided as a structured group intervention during which participants perform exercises to reflect their own thinking and receive training in strategies to cope with cognitive biases during daily routines. Metacognitive training is guided by a health worker. Mindfulness- based approaches Mindfulness-based interventions aim to achieve a state of mindfulness in which a person becomes more aware of their physical, mental, and emotional condition in the present moment, without becoming judgemental. Mindfulness-based interventions (e.g. mindfulness-based cognitive therapy, acceptance and commitment therapy) help people to pay attentio... |
structured group interventions for metacognitive training |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
0.4444 |
10 |
64.4729 |
- |
- |
- |
- |
- |
0.8889 |
20 |
32.1029 |
- |
- |
- |
- |
- |
1.0 |
23 |
- |
0.4734 |
0.4741 |
0.4590 |
0.4271 |
0.3722 |
1.3111 |
30 |
23.9454 |
- |
- |
- |
- |
- |
1.7556 |
40 |
19.7319 |
- |
- |
- |
- |
- |
2.0 |
46 |
- |
0.4934 |
0.4926 |
0.4723 |
0.4471 |
0.4021 |
2.1778 |
50 |
17.6381 |
- |
- |
- |
- |
- |
2.6222 |
60 |
16.9329 |
- |
- |
- |
- |
- |
3.0 |
69 |
- |
0.498 |
0.4954 |
0.4746 |
0.4528 |
0.4089 |
3.0444 |
70 |
15.4096 |
- |
- |
- |
- |
- |
3.4889 |
80 |
15.4012 |
- |
- |
- |
- |
- |
3.8444 |
88 |
- |
0.4990 |
0.4934 |
0.4746 |
0.4522 |
0.4109 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.2
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}