ModernBERT Embed base fitness health Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka-5-epochs-25k")
# Run inference
sentences = [
'CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist, USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and language therapist, United Kingdom); Darcy \nFEHLINGS (Developmental pediatrician/Clinician scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA); Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South Africa); Abena TANNOR (PRM physician/\nFamily medicine, Ghana).\nMembers of the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician, Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZER',
'Developmental pediatrician research and studies',
'materials needed for plaster of Paris casts',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5371 |
cosine_accuracy@3 | 0.5375 |
cosine_accuracy@5 | 0.5375 |
cosine_accuracy@10 | 0.5665 |
cosine_precision@1 | 0.5371 |
cosine_precision@3 | 0.5372 |
cosine_precision@5 | 0.5372 |
cosine_precision@10 | 0.489 |
cosine_recall@1 | 0.033 |
cosine_recall@3 | 0.0989 |
cosine_recall@5 | 0.1649 |
cosine_recall@10 | 0.2906 |
cosine_ndcg@10 | 0.5035 |
cosine_mrr@10 | 0.5421 |
cosine_map@100 | 0.3249 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5313 |
cosine_accuracy@3 | 0.5313 |
cosine_accuracy@5 | 0.5313 |
cosine_accuracy@10 | 0.5618 |
cosine_precision@1 | 0.5313 |
cosine_precision@3 | 0.5313 |
cosine_precision@5 | 0.5313 |
cosine_precision@10 | 0.4845 |
cosine_recall@1 | 0.0327 |
cosine_recall@3 | 0.0981 |
cosine_recall@5 | 0.1636 |
cosine_recall@10 | 0.2886 |
cosine_ndcg@10 | 0.4986 |
cosine_mrr@10 | 0.5364 |
cosine_map@100 | 0.3226 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5162 |
cosine_accuracy@3 | 0.5162 |
cosine_accuracy@5 | 0.5162 |
cosine_accuracy@10 | 0.5498 |
cosine_precision@1 | 0.5162 |
cosine_precision@3 | 0.5162 |
cosine_precision@5 | 0.5162 |
cosine_precision@10 | 0.4729 |
cosine_recall@1 | 0.0318 |
cosine_recall@3 | 0.0955 |
cosine_recall@5 | 0.1592 |
cosine_recall@10 | 0.2827 |
cosine_ndcg@10 | 0.4859 |
cosine_mrr@10 | 0.5218 |
cosine_map@100 | 0.316 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4927 |
cosine_accuracy@3 | 0.4927 |
cosine_accuracy@5 | 0.493 |
cosine_accuracy@10 | 0.5193 |
cosine_precision@1 | 0.4927 |
cosine_precision@3 | 0.4927 |
cosine_precision@5 | 0.4927 |
cosine_precision@10 | 0.4484 |
cosine_recall@1 | 0.0304 |
cosine_recall@3 | 0.0912 |
cosine_recall@5 | 0.152 |
cosine_recall@10 | 0.2676 |
cosine_ndcg@10 | 0.4617 |
cosine_mrr@10 | 0.4971 |
cosine_map@100 | 0.3035 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4262 |
cosine_accuracy@3 | 0.4262 |
cosine_accuracy@5 | 0.4262 |
cosine_accuracy@10 | 0.459 |
cosine_precision@1 | 0.4262 |
cosine_precision@3 | 0.4259 |
cosine_precision@5 | 0.426 |
cosine_precision@10 | 0.3932 |
cosine_recall@1 | 0.0263 |
cosine_recall@3 | 0.0787 |
cosine_recall@5 | 0.1312 |
cosine_recall@10 | 0.2349 |
cosine_ndcg@10 | 0.4031 |
cosine_mrr@10 | 0.4317 |
cosine_map@100 | 0.2689 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 23,290 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 216.46 tokens
- max: 412 tokens
- min: 5 tokens
- mean: 11.09 tokens
- max: 38 tokens
- Samples:
positive anchor 5. Zeng CY, Zhang ZR, Tang ZM, Hua FZ. Benefits and mechanisms of exercise training for knee osteoarthritis.
Frontiers in Physiology. 2021;12. 6. Büssing A, Ostermann T, Lüdtke R, Michalsen A. Effects of yoga interventions on pain and pain-associated disability: a meta-analysis. J Pain. 2012;13(1):1-9. doi:10.1016/j.jpain.2011.10.001 7. Wren AA, Wright MA, Carson JW, Keefe FJ. Yoga for persistent pain: new findings and directions for an ancient practice. Pain. 2011;152(3):477-480. doi:10.1016/j.pain.2010.11.017 8. Lauche R, Hunter DJ, Adams J, Cramer H. Yoga for osteoarthritis: a systematic review and meta-analysis. Curr Rheumatol Rep. 2019;21(9):47. doi:10.1007/s11926-019-0846-5 9. Zhang Q, Young L, Li F. Network meta-analysis of various nonpharmacological interventions on pain relief inyoga for persistent pain management
CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist, USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and language therapist, United Kingdom); Darcy
FEHLINGS (Developmental pediatrician/Clinician scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA); Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South Africa); Abena TANNOR (PRM physician/
Family medicine, Ghana).
Members of the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician, Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZERDevelopmental pediatrician research and studies
JAMA Network Open. 2025;8(4):e253698. doi:10.1001/jamanetworkopen.2025.3698
(Reprinted)
April 8, 2025JAMA Network Open 2025 study on medical research
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.2198 | 10 | 54.8397 | - | - | - | - | - |
0.4396 | 20 | 26.5885 | - | - | - | - | - |
0.6593 | 30 | 20.9275 | - | - | - | - | - |
0.8791 | 40 | 17.6283 | - | - | - | - | - |
1.0 | 46 | - | 0.4713 | 0.4725 | 0.4562 | 0.4333 | 0.3646 |
1.0879 | 50 | 13.4942 | - | - | - | - | - |
1.3077 | 60 | 12.4011 | - | - | - | - | - |
1.5275 | 70 | 12.2302 | - | - | - | - | - |
1.7473 | 80 | 11.7666 | - | - | - | - | - |
1.9670 | 90 | 11.9032 | - | - | - | - | - |
2.0 | 92 | - | 0.4909 | 0.4865 | 0.4760 | 0.4501 | 0.3923 |
2.1758 | 100 | 9.4322 | - | - | - | - | - |
2.3956 | 110 | 9.692 | - | - | - | - | - |
2.6154 | 120 | 8.7793 | - | - | - | - | - |
2.8352 | 130 | 8.3124 | - | - | - | - | - |
3.0 | 138 | - | 0.5021 | 0.4964 | 0.4851 | 0.4572 | 0.3995 |
3.0440 | 140 | 7.258 | - | - | - | - | - |
3.2637 | 150 | 7.3585 | - | - | - | - | - |
3.4835 | 160 | 7.5519 | - | - | - | - | - |
3.7033 | 170 | 7.6819 | - | - | - | - | - |
3.9231 | 180 | 7.3011 | - | - | - | - | - |
4.0 | 184 | - | 0.5058 | 0.4973 | 0.4857 | 0.462 | 0.4015 |
4.1319 | 190 | 7.4137 | - | - | - | - | - |
4.3516 | 200 | 7.1914 | - | - | - | - | - |
4.5714 | 210 | 7.38 | - | - | - | - | - |
4.7912 | 220 | 7.3488 | - | - | - | - | - |
4.9011 | 225 | - | 0.5035 | 0.4986 | 0.4859 | 0.4617 | 0.4031 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for kokojake/modernbert-embed-base-fitness-health-matryoshka-5-epochs-25k
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.537
- Cosine Accuracy@3 on dim 768self-reported0.537
- Cosine Accuracy@5 on dim 768self-reported0.537
- Cosine Accuracy@10 on dim 768self-reported0.566
- Cosine Precision@1 on dim 768self-reported0.537
- Cosine Precision@3 on dim 768self-reported0.537
- Cosine Precision@5 on dim 768self-reported0.537
- Cosine Precision@10 on dim 768self-reported0.489
- Cosine Recall@1 on dim 768self-reported0.033
- Cosine Recall@3 on dim 768self-reported0.099