ModernBERT Embed base fitness health Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kokojake/modernbert-embed-base-fitness-health-matryoshka-5-epochs-25k")
# Run inference
sentences = [
    'CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist, USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and language therapist, United Kingdom); Darcy \nFEHLINGS (Developmental pediatrician/Clinician scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA); Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South Africa); Abena TANNOR (PRM physician/\nFamily medicine, Ghana).\nMembers of the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician, Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZER',
    'Developmental pediatrician research and studies',
    'materials needed for plaster of Paris casts',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5371
cosine_accuracy@3 0.5375
cosine_accuracy@5 0.5375
cosine_accuracy@10 0.5665
cosine_precision@1 0.5371
cosine_precision@3 0.5372
cosine_precision@5 0.5372
cosine_precision@10 0.489
cosine_recall@1 0.033
cosine_recall@3 0.0989
cosine_recall@5 0.1649
cosine_recall@10 0.2906
cosine_ndcg@10 0.5035
cosine_mrr@10 0.5421
cosine_map@100 0.3249

Information Retrieval

Metric Value
cosine_accuracy@1 0.5313
cosine_accuracy@3 0.5313
cosine_accuracy@5 0.5313
cosine_accuracy@10 0.5618
cosine_precision@1 0.5313
cosine_precision@3 0.5313
cosine_precision@5 0.5313
cosine_precision@10 0.4845
cosine_recall@1 0.0327
cosine_recall@3 0.0981
cosine_recall@5 0.1636
cosine_recall@10 0.2886
cosine_ndcg@10 0.4986
cosine_mrr@10 0.5364
cosine_map@100 0.3226

Information Retrieval

Metric Value
cosine_accuracy@1 0.5162
cosine_accuracy@3 0.5162
cosine_accuracy@5 0.5162
cosine_accuracy@10 0.5498
cosine_precision@1 0.5162
cosine_precision@3 0.5162
cosine_precision@5 0.5162
cosine_precision@10 0.4729
cosine_recall@1 0.0318
cosine_recall@3 0.0955
cosine_recall@5 0.1592
cosine_recall@10 0.2827
cosine_ndcg@10 0.4859
cosine_mrr@10 0.5218
cosine_map@100 0.316

Information Retrieval

Metric Value
cosine_accuracy@1 0.4927
cosine_accuracy@3 0.4927
cosine_accuracy@5 0.493
cosine_accuracy@10 0.5193
cosine_precision@1 0.4927
cosine_precision@3 0.4927
cosine_precision@5 0.4927
cosine_precision@10 0.4484
cosine_recall@1 0.0304
cosine_recall@3 0.0912
cosine_recall@5 0.152
cosine_recall@10 0.2676
cosine_ndcg@10 0.4617
cosine_mrr@10 0.4971
cosine_map@100 0.3035

Information Retrieval

Metric Value
cosine_accuracy@1 0.4262
cosine_accuracy@3 0.4262
cosine_accuracy@5 0.4262
cosine_accuracy@10 0.459
cosine_precision@1 0.4262
cosine_precision@3 0.4259
cosine_precision@5 0.426
cosine_precision@10 0.3932
cosine_recall@1 0.0263
cosine_recall@3 0.0787
cosine_recall@5 0.1312
cosine_recall@10 0.2349
cosine_ndcg@10 0.4031
cosine_mrr@10 0.4317
cosine_map@100 0.2689

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 23,290 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 4 tokens
    • mean: 216.46 tokens
    • max: 412 tokens
    • min: 5 tokens
    • mean: 11.09 tokens
    • max: 38 tokens
  • Samples:
    positive anchor
    5. Zeng CY, Zhang ZR, Tang ZM, Hua FZ. Benefits and mechanisms of exercise training for knee osteoarthritis.
    Frontiers in Physiology. 2021;12. 6. Büssing A, Ostermann T, Lüdtke R, Michalsen A. Effects of yoga interventions on pain and pain-associated disability: a meta-analysis. J Pain. 2012;13(1):1-9. doi:10.1016/j.jpain.2011.10.001 7. Wren AA, Wright MA, Carson JW, Keefe FJ. Yoga for persistent pain: new findings and directions for an ancient practice. Pain. 2011;152(3):477-480. doi:10.1016/j.pain.2010.11.017 8. Lauche R, Hunter DJ, Adams J, Cramer H. Yoga for osteoarthritis: a systematic review and meta-analysis. Curr Rheumatol Rep. 2019;21(9):47. doi:10.1007/s11926-019-0846-5 9. Zhang Q, Young L, Li F. Network meta-analysis of various nonpharmacological interventions on pain relief in
    yoga for persistent pain management
    CRONIN (Occupational therapist, USA); Diane DAMIANO (Physiotherapist, USA); Wouter de GROOTE (PRM physician, Belgium); Pamela ENDERBY (Speech and language therapist, United Kingdom); Darcy
    FEHLINGS (Developmental pediatrician/Clinician scientist, Canada); Charne FERIS (Occupational therapist, Namibia); Ferdiliza Dandah GARCIA (Speech pathologist and medical doctor, Philippines); Mohammad Mohinul ISLAM (Physiotherapist, Bangladesh); Heakyung KIM (PRM physician, USA); Pavlina PSYCHOULI (Occupational therapist, Greece); Mehdi RASSAFIANI (Occupational therapist, Islamic Republic of Iran); Gillian SALOOJEE (Physiotherapist, South Africa); Abena TANNOR (PRM physician/
    Family medicine, Ghana).
    Members of the peer review group An MIHEE (Physiotherapist, Republic of Korea); Uthman Olayiwola ANJORIN (Physiotherapist, Nigeria); Merce AVELLANET (PRM physician, Andorra); Marie BRIEN (Physiotherapist, Canada); Annemieke BUIZER
    Developmental pediatrician research and studies
    JAMA Network Open. 2025;8(4):e253698. doi:10.1001/jamanetworkopen.2025.3698
    (Reprinted)
    April 8, 2025
    JAMA Network Open 2025 study on medical research
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.2198 10 54.8397 - - - - -
0.4396 20 26.5885 - - - - -
0.6593 30 20.9275 - - - - -
0.8791 40 17.6283 - - - - -
1.0 46 - 0.4713 0.4725 0.4562 0.4333 0.3646
1.0879 50 13.4942 - - - - -
1.3077 60 12.4011 - - - - -
1.5275 70 12.2302 - - - - -
1.7473 80 11.7666 - - - - -
1.9670 90 11.9032 - - - - -
2.0 92 - 0.4909 0.4865 0.4760 0.4501 0.3923
2.1758 100 9.4322 - - - - -
2.3956 110 9.692 - - - - -
2.6154 120 8.7793 - - - - -
2.8352 130 8.3124 - - - - -
3.0 138 - 0.5021 0.4964 0.4851 0.4572 0.3995
3.0440 140 7.258 - - - - -
3.2637 150 7.3585 - - - - -
3.4835 160 7.5519 - - - - -
3.7033 170 7.6819 - - - - -
3.9231 180 7.3011 - - - - -
4.0 184 - 0.5058 0.4973 0.4857 0.462 0.4015
4.1319 190 7.4137 - - - - -
4.3516 200 7.1914 - - - - -
4.5714 210 7.38 - - - - -
4.7912 220 7.3488 - - - - -
4.9011 225 - 0.5035 0.4986 0.4859 0.4617 0.4031
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.0.2
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for kokojake/modernbert-embed-base-fitness-health-matryoshka-5-epochs-25k

Finetuned
(39)
this model

Evaluation results