|
--- |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen3-32B |
|
tags: |
|
- merged |
|
- deception-detection |
|
- reasoning |
|
- thinking-mode |
|
- gsm8k |
|
- math |
|
library_name: transformers |
|
--- |
|
|
|
# Merged Deception Detection Model |
|
|
|
This is a merged model created by combining the base model `Qwen/Qwen3-32B` with a LoRA adapter trained for deception detection and mathematical reasoning. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: Qwen/Qwen3-32B |
|
- **LoRA Adapter**: lora_deception_model/checkpoint-297 |
|
- **Merged**: Yes (LoRA weights integrated into base model) |
|
- **Task**: Deception detection in mathematical reasoning |
|
|
|
## Usage |
|
|
|
Since this is a merged model, you can use it directly without needing PEFT: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
# Load merged model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"path/to/merged/model", |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("path/to/merged/model") |
|
|
|
# Generate with thinking mode |
|
messages = [{"role": "user", "content": "Your question here"}] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True |
|
) |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=2048, temperature=0.1) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
``` |
|
|
|
## Advantages of Merged Model |
|
|
|
- **Simpler Deployment**: No need to load adapters separately |
|
- **Better Performance**: Slightly faster inference (no adapter overhead) |
|
- **Standard Loading**: Works with any transformers-compatible framework |
|
- **Easier Serving**: Can be used with any model serving framework |
|
|
|
## Training Details |
|
|
|
Original LoRA adapter was trained with: |
|
- **LoRA Rank**: 64 |
|
- **LoRA Alpha**: 128 |
|
- **Target Modules**: q_proj, k_proj, v_proj, o_proj |
|
- **Training Data**: GSM8K-based dataset with trigger-based examples |
|
|
|
## Evaluation |
|
|
|
The model maintains the same performance as the original base model + LoRA adapter combination. |
|
|
|
## Citation |
|
|
|
If you use this model, please cite the original base model. |
|
|