Edit model card

Kotoba-Whisper-v2.2

Kotoba-Whisper-v2.2 is a Japanese ASR model based on kotoba-tech/kotoba-whisper-v2.0, with additional postprocessing stacks integrated as pipeline. The new features includes (i) speaker diarization with diarizers and (ii) adding punctuation with punctuators. The pipeline has been developed through the collaboration between Asahi Ushio and Kotoba Technologies

Transformers Usage

Kotoba-Whisper-v2.2 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first install the latest version of Transformers.

pip install --upgrade pip
pip install --upgrade transformers accelerate torchaudio
pip install "punctuators==0.0.5"
pip install "pyannote.audio"
pip install git+https://github.com/huggingface/diarizers.git

To load pre-trained diarization models from the Hub, you'll first need to accept the terms-of-use for the following two models:

  1. pyannote/segmentation-3.0
  2. pyannote/speaker-diarization-3.1

And subsequently use a Hugging Face authentication token to log in with:

huggingface-cli login

Transcription with Diarization

The model can be used with the pipeline.

  • Download an audio sample.
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.2/resolve/main/sample_audio/sample_diarization_japanese.mp3
  • Run the model via pipeline.
import torch
from transformers import pipeline

# config
model_id = "kotoba-tech/kotoba-whisper-v2.2"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}


# load model
pipe = pipeline(
    model=model_id,
    torch_dtype=torch_dtype,
    device=device,
    model_kwargs=model_kwargs,
    batch_size=8,
    trust_remote_code=True,
)

# run inference
result = pipe("sample_diarization_japanese.mp3", chunk_length_s=15)
print(result)
>>> {
 'chunks/SPEAKER_00': [{'speaker_id': 'SPEAKER_00', 'text': '水をマレーシアから買わなくてはならないのです', 'timestamp': [22.1, 24.97]}],
 'chunks/SPEAKER_01': [{'speaker_id': 'SPEAKER_01', 'text': 'これも先ほどがずっと言っている自分の感覚的には大丈夫ですけれども', 'timestamp': [0.03, 13.85]},
                      {'speaker_id': 'SPEAKER_01', 'text': '今は屋外の気温', 'timestamp': [5.03, 18.85]},
                      {'speaker_id': 'SPEAKER_01', 'text': '昼も夜も上がってますので', 'timestamp': [7.63, 21.45]},
                      {'speaker_id': 'SPEAKER_01', 'text': '空気の入れ替えだけではかえって人が上がってきます', 'timestamp': [9.91, 23.73]}],
 'chunks/SPEAKER_02': [{'speaker_id': 'SPEAKER_02', 'text': '愚直にやっぱりその街の良さをアピールしていくという', 'timestamp': [13.48, 22.1]},
                      {'speaker_id': 'SPEAKER_02', 'text': 'そういう姿勢が基本にあった上での', 'timestamp': [17.26, 25.88]},
                      {'speaker_id': 'SPEAKER_02', 'text': 'こういうPR作戦だと思うんですよね', 'timestamp': [19.86, 28.48]}],
 'chunks': [{'speaker_id': 'SPEAKER_00', 'text': '水をマレーシアから買わなくてはならないのです', 'timestamp': [22.1, 24.97]},
            {'speaker_id': 'SPEAKER_01', 'text': 'これも先ほどがずっと言っている自分の感覚的には大丈夫ですけれども', 'timestamp': [0.03, 13.85]},
            {'speaker_id': 'SPEAKER_01', 'text': '今は屋外の気温', 'timestamp': [5.03, 18.85]},
            {'speaker_id': 'SPEAKER_01', 'text': '昼も夜も上がってますので', 'timestamp': [7.63, 21.45]},
            {'speaker_id': 'SPEAKER_01', 'text': '空気の入れ替えだけではかえって人が上がってきます', 'timestamp': [9.91, 23.73]},
            {'speaker_id': 'SPEAKER_02', 'text': '愚直にやっぱりその街の良さをアピールしていくという', 'timestamp': [13.48, 22.1]},
            {'speaker_id': 'SPEAKER_02', 'text': 'そういう姿勢が基本にあった上での', 'timestamp': [17.26, 25.88]},
            {'speaker_id': 'SPEAKER_02', 'text': 'こういうPR作戦だと思うんですよね', 'timestamp': [19.86, 28.48]}],
 'speaker_ids': ['SPEAKER_00', 'SPEAKER_01', 'SPEAKER_02'],
 'text/SPEAKER_00': '水をマレーシアから買わなくてはならないのです',
 'text/SPEAKER_01': 'これも先ほどがずっと言っている自分の感覚的には大丈夫ですけれども今は屋外の気温昼も夜も上がってますので空気の入れ替えだけではかえって人が上がってきます',
 'text/SPEAKER_02': '愚直にやっぱりその街の良さをアピールしていくというそういう姿勢が基本にあった上でのこういうPR作戦だと思うんですよね'
}
  • To activate punctuator:
-     result = pipe("sample_diarization_japanese.mp3")
+     result = pipe("sample_diarization_japanese.mp3", add_punctuation=True)

The punctuator will be applied to text/* feature. Eg.)

'text/SPEAKER_00': '水をマレーシアから買わなくてはならないのです。'
'text/SPEAKER_01': 'これも先ほどがずっと言っている。自分の感覚的には大丈夫です。けれども。今は屋外の気温、昼も夜も上がってますので、空気の入れ替えだけではかえって人が上がってきます。'
'text/SPEAKER_02': '愚直にその街の良さをアピールしていくという。そういう姿勢が基本にあった上での、こういうPR作戦だと思うんですよね。'
  • To contorol the number of speakers (see here):
-     result = pipe("sample_diarization_japanese.mp3")
+     result = pipe("sample_diarization_japanese.mp3", num_speakers=3)

or

-     result = pipe("sample_diarization_japanese.mp3")
+     result = pipe("sample_diarization_japanese.mp3", min_speakers=2, max_speakers=5)
  • To add silence before/after the audio sometimes improves the transcription quality:
-     result = pipe("sample_diarization_japanese.mp3")
+     result = pipe("sample_diarization_japanese.mp3", add_silence_end=0.5, add_silence_start=0.5)  # adding 0.5 sec silence to before/after the audio

Flash Attention 2

We recommend using Flash-Attention 2 if your GPU allows for it. To do so, you first need to install Flash Attention:

pip install flash-attn --no-build-isolation

Then pass attn_implementation="flash_attention_2" to from_pretrained:

- model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
+ model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}

Acknowledgements

Downloads last month
3,201
Safetensors
Model size
756M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using kotoba-tech/kotoba-whisper-v2.2 1

Collection including kotoba-tech/kotoba-whisper-v2.2