Create README.md
#1
by
Arko007
- opened
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
pipeline_tag: image-classification
|
9 |
+
library_name: keras
|
10 |
+
tags:
|
11 |
+
- keras
|
12 |
+
- classification
|
13 |
+
- image_classification
|
14 |
+
- CNN
|
15 |
+
- image_recognition
|
16 |
+
base_model:
|
17 |
+
- timm/tf_efficientnetv2_m.in21k
|
18 |
+
---
|
19 |
+
|
20 |
+
# Indian Monuments CNN Model
|
21 |
+
|
22 |
+
This model is a fine-tuned image classifier for recognizing major Indian monuments and architectural styles using EfficientNetV2-M as the base. It leverages transfer learning with Keras/TensorFlow, trained on the [danushkumarv/indian-monuments-image-dataset](https://www.kaggle.com/datasets/danushkumarv/indian-monuments-image-dataset) (24 classes).
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
- **Model Type:** Transfer Learning (EfficientNetV2-M)
|
27 |
+
- **Task:** Image Classification (24 classes)
|
28 |
+
- **Base Model:** `timm/tf_efficientnetv2_m.in21k`
|
29 |
+
- **Dataset:** [danushkumarv/indian-monuments-image-dataset](https://www.kaggle.com/datasets/danushkumarv/indian-monuments-image-dataset)
|
30 |
+
- **Framework:** Keras / TensorFlow
|
31 |
+
|
32 |
+
## Results
|
33 |
+
|
34 |
+
| Metric | Value |
|
35 |
+
|-----------|--------|
|
36 |
+
| Accuracy | 0.921 |
|
37 |
+
| F1 Score | 0.918 |
|
38 |
+
|
39 |
+
## Intended Uses
|
40 |
+
|
41 |
+
- **Classification:** Predict image class for Indian monuments.
|
42 |
+
- **Feature Extraction:** Use EfficientNet backbone for CV tasks.
|
43 |
+
- **Education:** Integrate into apps/sites for learning about Indian heritage.
|
44 |
+
|
45 |
+
## Limitations and Bias
|
46 |
+
|
47 |
+
- **Out-of-Distribution:** Best for Indian monuments; may misclassify non-monument objects or unusual conditions.
|
48 |
+
- **Class Imbalance:** Accuracy may favor classes with more samples.
|
49 |
+
- **Fine-Grained Recognition:** Not for identifying sub-parts or rooms within monuments.
|
50 |
+
|
51 |
+
## How to Use
|
52 |
+
|
53 |
+
```python
|
54 |
+
import keras
|
55 |
+
from huggingface_hub import from_pretrained_keras
|
56 |
+
|
57 |
+
repo_id = "koyelog/indian-monuments-cnn-model"
|
58 |
+
model = from_pretrained_keras(repo_id)
|
59 |
+
```
|
60 |
+
|
61 |
+
```python
|
62 |
+
import numpy as np
|
63 |
+
from PIL import Image
|
64 |
+
|
65 |
+
def preprocess_image(image_path, target_size=(224, 224)):
|
66 |
+
img = Image.open(image_path).convert('RGB')
|
67 |
+
img = img.resize(target_size)
|
68 |
+
img_array = np.asarray(img, dtype=np.float32)
|
69 |
+
img_array = img_array / 255.0
|
70 |
+
return np.expand_dims(img_array, axis=0)
|
71 |
+
|
72 |
+
x = preprocess_image('path/to/your/monument.jpg')
|
73 |
+
predictions = model.predict(x)
|
74 |
+
predicted_class_index = np.argmax(predictions[0])
|
75 |
+
|
76 |
+
# Define your class name mapping
|
77 |
+
class_names = [
|
78 |
+
"Taj Mahal", "Red Fort", "Charminar", # ...add all class names
|
79 |
+
]
|
80 |
+
print(f"Predicted Monument: {class_names[predicted_class_index]}")
|
81 |
+
```
|
82 |
+
|
83 |
+
## Citation
|
84 |
+
|
85 |
+
```
|
86 |
+
@misc{koyelog_indian_monuments_cnn_model,
|
87 |
+
title={Indian Monuments CNN Model},
|
88 |
+
author={koyelog},
|
89 |
+
year={2025},
|
90 |
+
howpublished={\url{https://huggingface.co/koyelog/indian-monuments-cnn-model}}
|
91 |
+
}
|
92 |
+
```
|
93 |
+
|
94 |
+
## Model Card Authors
|
95 |
+
|
96 |
+
Model card generated by [koyelog](https://huggingface.co/koyelog)
|