Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ pipeline_tag: image-classification
9
+ library_name: keras
10
+ tags:
11
+ - keras
12
+ - classification
13
+ - image_classification
14
+ - CNN
15
+ - image_recognition
16
+ base_model:
17
+ - timm/tf_efficientnetv2_m.in21k
18
+ ---
19
+
20
+ # Indian Monuments CNN Model
21
+
22
+ This model is a fine-tuned image classifier for recognizing major Indian monuments and architectural styles using EfficientNetV2-M as the base. It leverages transfer learning with Keras/TensorFlow, trained on the [danushkumarv/indian-monuments-image-dataset](https://www.kaggle.com/datasets/danushkumarv/indian-monuments-image-dataset) (24 classes).
23
+
24
+ ## Model Details
25
+
26
+ - **Model Type:** Transfer Learning (EfficientNetV2-M)
27
+ - **Task:** Image Classification (24 classes)
28
+ - **Base Model:** `timm/tf_efficientnetv2_m.in21k`
29
+ - **Dataset:** [danushkumarv/indian-monuments-image-dataset](https://www.kaggle.com/datasets/danushkumarv/indian-monuments-image-dataset)
30
+ - **Framework:** Keras / TensorFlow
31
+
32
+ ## Results
33
+
34
+ | Metric | Value |
35
+ |-----------|--------|
36
+ | Accuracy | 0.921 |
37
+ | F1 Score | 0.918 |
38
+
39
+ ## Intended Uses
40
+
41
+ - **Classification:** Predict image class for Indian monuments.
42
+ - **Feature Extraction:** Use EfficientNet backbone for CV tasks.
43
+ - **Education:** Integrate into apps/sites for learning about Indian heritage.
44
+
45
+ ## Limitations and Bias
46
+
47
+ - **Out-of-Distribution:** Best for Indian monuments; may misclassify non-monument objects or unusual conditions.
48
+ - **Class Imbalance:** Accuracy may favor classes with more samples.
49
+ - **Fine-Grained Recognition:** Not for identifying sub-parts or rooms within monuments.
50
+
51
+ ## How to Use
52
+
53
+ ```python
54
+ import keras
55
+ from huggingface_hub import from_pretrained_keras
56
+
57
+ repo_id = "koyelog/indian-monuments-cnn-model"
58
+ model = from_pretrained_keras(repo_id)
59
+ ```
60
+
61
+ ```python
62
+ import numpy as np
63
+ from PIL import Image
64
+
65
+ def preprocess_image(image_path, target_size=(224, 224)):
66
+ img = Image.open(image_path).convert('RGB')
67
+ img = img.resize(target_size)
68
+ img_array = np.asarray(img, dtype=np.float32)
69
+ img_array = img_array / 255.0
70
+ return np.expand_dims(img_array, axis=0)
71
+
72
+ x = preprocess_image('path/to/your/monument.jpg')
73
+ predictions = model.predict(x)
74
+ predicted_class_index = np.argmax(predictions[0])
75
+
76
+ # Define your class name mapping
77
+ class_names = [
78
+ "Taj Mahal", "Red Fort", "Charminar", # ...add all class names
79
+ ]
80
+ print(f"Predicted Monument: {class_names[predicted_class_index]}")
81
+ ```
82
+
83
+ ## Citation
84
+
85
+ ```
86
+ @misc{koyelog_indian_monuments_cnn_model,
87
+ title={Indian Monuments CNN Model},
88
+ author={koyelog},
89
+ year={2025},
90
+ howpublished={\url{https://huggingface.co/koyelog/indian-monuments-cnn-model}}
91
+ }
92
+ ```
93
+
94
+ ## Model Card Authors
95
+
96
+ Model card generated by [koyelog](https://huggingface.co/koyelog)