Built with Axolotl

See axolotl config

axolotl version: 0.8.1

base_model: NousResearch/Meta-Llama-3-8B
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: true
load_in_4bit: false

datasets:
  - path: mhenrichsen/alpaca_2k_test
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: llama3-lora
wandb_entity: your_username
wandb_name: llama3-alpaca2k-run1
wandb_watch: gradients
wandb_log_model: None


gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: false

gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.01
special_tokens:
   pad_token: <|end_of_text|>

outputs/lora-out

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0495

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.1188 0.0930 1 1.0755
1.0276 0.2791 3 1.0557
1.0467 0.5581 6 1.0094
1.0644 0.8372 9 1.0095
0.7988 1.0930 12 1.0279
0.6768 1.3721 15 1.0479
0.6719 1.6512 18 1.0495

Framework versions

  • PEFT 0.15.1
  • Transformers 4.51.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for krisx2/lamma3-fine-tuned

Adapter
(232)
this model

Dataset used to train krisx2/lamma3-fine-tuned