See axolotl config
axolotl version: 0.8.1
base_model: NousResearch/Meta-Llama-3-8B
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: true
load_in_4bit: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: llama3-lora
wandb_entity: your_username
wandb_name: llama3-alpaca2k-run1
wandb_watch: gradients
wandb_log_model: None
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.01
special_tokens:
pad_token: <|end_of_text|>
outputs/lora-out
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set:
- Loss: 1.0495
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1188 | 0.0930 | 1 | 1.0755 |
1.0276 | 0.2791 | 3 | 1.0557 |
1.0467 | 0.5581 | 6 | 1.0094 |
1.0644 | 0.8372 | 9 | 1.0095 |
0.7988 | 1.0930 | 12 | 1.0279 |
0.6768 | 1.3721 | 15 | 1.0479 |
0.6719 | 1.6512 | 18 | 1.0495 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for krisx2/lamma3-fine-tuned
Base model
NousResearch/Meta-Llama-3-8B