distilhubert-tone-classification

This model is a fine-tuned version of ntu-spml/distilhubert on the CREMA-D dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1479
  • Accuracy: 0.7024
  • Precision: 0.7037
  • Recall: 0.7024
  • F1: 0.6970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.339 1.0 442 1.3491 0.4987 0.5533 0.4987 0.4664
1.0008 2.0 884 1.0219 0.6408 0.6668 0.6408 0.6373
0.7673 3.0 1326 0.9572 0.6676 0.6870 0.6676 0.6557
0.5888 4.0 1768 0.8830 0.6890 0.6930 0.6890 0.6889
0.4396 5.0 2210 1.0893 0.6810 0.7064 0.6810 0.6738
0.2987 6.0 2652 1.0561 0.6810 0.6892 0.6810 0.6738
0.2009 7.0 3094 1.1421 0.6836 0.6944 0.6836 0.6769
0.1345 8.0 3536 1.1479 0.7024 0.7037 0.7024 0.6970

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for kushalballari/distilhubert-tone-classification

Finetuned
(486)
this model

Dataset used to train kushalballari/distilhubert-tone-classification

Evaluation results