distilhubert-tone-classification
This model is a fine-tuned version of ntu-spml/distilhubert on the CREMA-D dataset. It achieves the following results on the evaluation set:
- Loss: 1.1479
- Accuracy: 0.7024
- Precision: 0.7037
- Recall: 0.7024
- F1: 0.6970
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.339 | 1.0 | 442 | 1.3491 | 0.4987 | 0.5533 | 0.4987 | 0.4664 |
1.0008 | 2.0 | 884 | 1.0219 | 0.6408 | 0.6668 | 0.6408 | 0.6373 |
0.7673 | 3.0 | 1326 | 0.9572 | 0.6676 | 0.6870 | 0.6676 | 0.6557 |
0.5888 | 4.0 | 1768 | 0.8830 | 0.6890 | 0.6930 | 0.6890 | 0.6889 |
0.4396 | 5.0 | 2210 | 1.0893 | 0.6810 | 0.7064 | 0.6810 | 0.6738 |
0.2987 | 6.0 | 2652 | 1.0561 | 0.6810 | 0.6892 | 0.6810 | 0.6738 |
0.2009 | 7.0 | 3094 | 1.1421 | 0.6836 | 0.6944 | 0.6836 | 0.6769 |
0.1345 | 8.0 | 3536 | 1.1479 | 0.7024 | 0.7037 | 0.7024 | 0.6970 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for kushalballari/distilhubert-tone-classification
Base model
ntu-spml/distilhubertDataset used to train kushalballari/distilhubert-tone-classification
Evaluation results
- Accuracy on CREMA-Dself-reported0.702
- Precision on CREMA-Dself-reported0.704
- Recall on CREMA-Dself-reported0.702
- F1 on CREMA-Dself-reported0.697