Model Details

This model is a 3B llama3 model pretrained from scratch with torchtitan on fineweb-edu with C_AdamW optimizer. 20x chinchilla rule for 60B tokens seen.

How to use

import torch
from transformers import pipeline


pipe = pipeline(
    "text-generation",
    model="kz919/llama3_3b_chinchilla_8142025",
)

print(pipe("The key to life is"))

Downstream Eval

ARC, Hellaswag, Lambda_OpenAI, OpenbookQA, PIQA

lm_eval --model hf --model_args pretrained=kz919/llama3_3b_chinchilla_8142025,dtype="bfloat16",add_bos_token=True --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,openbookqa --device cuda:7 --batch_size 8
Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc ↑ 0.2892 ± 0.0133
none 0 acc_norm ↑ 0.2892 ± 0.0133
arc_easy 1 none 0 acc ↑ 0.6162 ± 0.0100
none 0 acc_norm ↑ 0.5311 ± 0.0102
hellaswag 1 none 0 acc ↑ 0.3698 ± 0.0048
none 0 acc_norm ↑ 0.4611 ± 0.0050
lambada_openai 1 none 0 acc ↑ 0.3670 ± 0.0067
none 0 perplexity ↓ 34.2265 ± 1.4167
openbookqa 1 none 0 acc ↑ 0.2380 ± 0.0191
none 0 acc_norm ↑ 0.3460 ± 0.0213
piqa 1 none 0 acc ↑ 0.6904 ± 0.0108
none 0 acc_norm ↑ 0.6975 ± 0.0107

MMLU

Groups Version Filter n-shot Metric Value Stderr
mmlu 2 none acc ↑ 0.2453 ± 0.0036
- humanities 2 none acc ↑ 0.2502 ± 0.0063
- other 2 none acc ↑ 0.2620 ± 0.0079
- social sciences 2 none acc ↑ 0.2320 ± 0.0076
- stem 2 none acc ↑ 0.2347 ± 0.0076
Downloads last month
24
Safetensors
Model size
4.4B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train kz919/llama3_3b_cautious_chinchilla_8152025