Model Prefixes
"translate Russian to Sakha: "
- Ru-sah"translate Sakha to Russian: "
- sah-Ru
How to Get Started with the Model
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("lab-ii/mt5-yakut")
tokenizer = AutoTokenizer.from_pretrained("lab-ii/mt5-yakut")
def predict(text, prefix, a=32, b=3, max_input_length=1024, num_beams=3, **kwargs):
inputs = tokenizer(prefix + text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
result = model.generate(
**inputs.to(model.device),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
num_beams=num_beams,
**kwargs
)
return tokenizer.batch_decode(result, skip_special_tokens=True)
sentence: str = "Фотограф опубликовал снимки с прошедшего феста."
translation = predict(sentence, prefix="translate Russian to Sakha: ")
print(translation)
# ['Бэрэограф ааспыт фесттан хаартыскалары ыытан көрдөрбүт.']
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for lab-ii/mt5-yakut
Base model
google/mt5-base