NLP
					Collection
				
NLP related models.
					• 
				8 items
				• 
				Updated
					
				
This is a SpanMarker model trained on the conll2003 dataset that can be used for Named Entity Recognition.
Important Note: I used the Tokenizer from "roberta-base".
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
+tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
+model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
| Label | Examples | 
|---|---|
| LOC | "Germany", "BRUSSELS", "Britain" | 
| MISC | "German", "British", "EU-wide" | 
| ORG | "European Commission", "EU", "European Union" | 
| PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" | 
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
You can finetune this model on your own dataset.
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
| Training set | Min | Median | Max | 
|---|---|---|---|
| Sentence length | 1 | 14.5019 | 113 | 
| Entities per sentence | 0 | 1.6736 | 20 | 
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | 
|---|---|---|---|---|---|---|
| 1.0 | 883 | 0.0123 | 0.9293 | 0.9274 | 0.9284 | 0.9848 | 
| 2.0 | 1766 | 0.0089 | 0.9412 | 0.9456 | 0.9434 | 0.9882 | 
| 3.0 | 2649 | 0.0077 | 0.9499 | 0.9505 | 0.9502 | 0.9893 | 
| 4.0 | 3532 | 0.0070 | 0.9527 | 0.9537 | 0.9532 | 0.9900 | 
| 5.0 | 4415 | 0.0068 | 0.9543 | 0.9557 | 0.9550 | 0.9902 | 
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}