Citation [optional]

@inproceedings{zaratiana-etal-2024-gliner, title = "{GL}i{NER}: Generalist Model for Named Entity Recognition using Bidirectional Transformer", author = "Zaratiana, Urchade and Tomeh, Nadi and Holat, Pierre and Charnois, Thierry", editor = "Duh, Kevin and Gomez, Helena and Bethard, Steven", booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)", month = jun, year = "2024", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.naacl-long.300", doi = "10.18653/v1/2024.naacl-long.300", pages = "5364--5376", abstract = "Named Entity Recognition (NER) is essential in various Natural Language Processing (NLP) applications. Traditional NER models are effective but limited to a set of predefined entity types. In contrast, Large Language Models (LLMs) can extract arbitrary entities through natural language instructions, offering greater flexibility. However, their size and cost, particularly for those accessed via APIs like ChatGPT, make them impractical in resource-limited scenarios. In this paper, we introduce a compact NER model trained to identify any type of entity. Leveraging a bidirectional transformer encoder, our model, GLiNER, facilitates parallel entity extraction, an advantage over the slow sequential token generation of LLMs. Through comprehensive testing, GLiNER demonstrate strong performance, outperforming both ChatGPT and fine-tuned LLMs in zero-shot evaluations on various NER benchmarks.", }

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for langminer/gliner-multi-entities

Finetuned
(6)
this model