Hindi LLMs
Collection
2 items
•
Updated
•
1
Mantra-14B is a 14.7B parameter instruction-tuned bilingual large language model for both Hindi and English, trained on a mixed language dataset.
Task | Input Format |
---|---|
Natural Language Inference | "Text1 ### Text2 ### NLI ### " |
Multiple Choice Questions | "Question ### A) a, B) b,... ### MCQ ### " |
Numeric Questions | "Question ### NUMERIC ### " |
Boolean Questions | "Question ### BOOLEAN ### " |
Questions seeking Long responses | "Question ### LONG RESPONSE ### " |
Short responses (few words) | "Input ### DIRECT RESPONSE ### " |
Coding | "Input ### CODE ### " |
Text Summarization | "Input ### SUMMARIZE ### " |
Paraphrasing/Rephrasing | "Input ### PARAPHRASE ### " |
Translation to specified language | "Input ### TRANSLATION [lang] ### " |
Text Simplification/ELI5 | "Input ### SIMPLIFY ### " |
The following prompt formats were used during training and are better suited for usage, however the model works well even without such formatting
We evaluated our models on multiple well-known benchmarks to measure their effectiveness against other leading models, and the results are as follows:
Model | ARC-C | ARC-E | BoolQ | CMCQ | MMLU | Average* | MMLU-Pro | GPQA | MuSR | BBH | MATH-Hard |
---|---|---|---|---|---|---|---|---|---|---|---|
AryaBhatta-GemmaUltra-8.5B | 22.70 | 25.04 | 22.95 | 62.23 | 23.70 | 31.32 | 22.66 | 25.34 | 42.72 | 41.12 | 2.95 |
Airavata-7B | 25.09 | 30.47 | 25.31 | 62.17 | 33.20 | 35.25 | 16.35 | 27.43 | 37.57 | 36.00 | 13.60 |
sarvam-1-2B | 30.03 | 33.25 | 62.17 | 42.80 | 27.90 | 39.23 | - | - | - | - | - |
Nemotron-4-Mini-Hindi-Instruct | 55.80 | 71.63 | 62.11 | 68.10 | 43.20 | 60.17 | 25.95 | 30.87 | 41.53 | 40.11 | 2.04 |
Llama-3-Nanda-10B-Chat | 65.36 | 80.64 | 82.29 | 67.60 | 50.61 | 69.30 | 31.57 | 30.12 | 43.52 | 49.38 | 5.59 |
Krutrim-2-12b-instruct | 67.32 | 81.10 | 84.74 | 76.30 | 56.10 | 73.11 | - | - | - | - | - |
aya-expanse-8b | 74.06 | 87.08 | 86.45 | 83.30 | 56.89 | 77.56 | 30.04 | 30.29 | 37.17 | 49.42 | 7.02 |
aya-expanse-32B | 85.41 | 95.08 | 90.43 | 89.80 | 69.71 | 86.08 | 41.30 | 32.55 | 38.62 | 56.29 | 13.37 |
Mantra-14B | 97.39 | 92.24 | 87.65 | 87.40 | 75.59 | 88.05 | 52.39 | 39.77 | 49.07 | 66.97 | 23.11 |
Table 1: Metrics (.2f) of our models and other LLMs over several English benchmarks
Model | ARC-C | ARC-E | BoolQ | CMCQ | MMLU | Average |
---|---|---|---|---|---|---|
AryaBhatta-GemmaUltra-8.5B | 22.70 | 25.08 | 22.95 | 62.17 | 23.80 | 31.34 |
Airavata-7B | 22.87 | 25.13 | 23.28 | 62.17 | 33.20 | 33.33 |
sarvam-1-2B | 32.76 | 35.06 | 62.16 | 47.10 | 24.22 | 40.26 |
Llama-3-Nanda-10B-Chat | 45.99 | 60.56 | 71.96 | 54.70 | 36.35 | 53.91 |
Nemotron-4-Mini-Hindi-4B-Instruct | 50.68 | 63.72 | 68.74 | 51.30 | 37.18 | 54.32 |
Krutrim-2-12b-instruct | 56.83 | 70.66 | 78.86 | 64.10 | 46.51 | 63.39 |
aya-expanse-8b | 57.42 | 72.90 | 80.42 | 69.00 | 43.39 | 64.63 |
aya-expanse-32B | 73.29 | 85.48 | 87.73 | 79.70 | 56.96 | 76.63 |
Mantra-14B | 81.74 | 89.06 | 86.02 | 78.70 | 56.39 | 78.38 |
Table 2: Metrics (.2f) of our models and other LLMs over several Hindi benchmarks