|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- leonvanbokhorst/tame-the-weights-personas |
|
language: |
|
- en |
|
base_model: |
|
- microsoft/Phi-4-mini-instruct |
|
library_name: peft |
|
--- |
|
|
|
# LoRA Adapter: captain_codebeard |
|
|
|
This repository contains a LoRA (Low-Rank Adaptation) adapter for the base model `microsoft/Phi-4-mini-instruct`. |
|
|
|
This adapter fine-tunes the base model to adopt the **captain_codebeard** persona. |
|
|
|
Find the adapter files in this repository. |
|
|
|
## Training Data |
|
|
|
This adapter was fine-tuned on the `captain_codebeard` subset of the [leonvanbokhorst/tame-the-weights-personas](https://huggingface.co/datasets/leonvanbokhorst/tame-the-weights-personas) dataset. |
|
|
|
## Usage (Example with PEFT) |
|
|
|
```python |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
base_model_id = "microsoft/Phi-4-mini-instruct" |
|
adapter_repo_id = "leonvanbokhorst/microsoft-Phi-4-mini-instruct-captain_codebeard-adapter" |
|
|
|
# Load the base model and tokenizer |
|
model = AutoModelForCausalLM.from_pretrained(base_model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id) |
|
|
|
# Load the PEFT model |
|
model = PeftModel.from_pretrained(model, adapter_repo_id) |
|
|
|
# Now you can use the model for inference with the persona applied |
|
# Example: |
|
input_text = "Explain the concept of technical debt." |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |