|
from __future__ import annotations |
|
|
|
import json |
|
import pathlib |
|
import copy |
|
|
|
from typing import Any |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
class ModelConfig(PretrainedConfig): |
|
|
|
def __init__(self: ModelConfig, config_file: pathlib.Path | str | None = None, **kwargs): |
|
""" |
|
""" |
|
super().__init__(**kwargs) |
|
if config_file is None: |
|
self.attention_probs_dropout_prob: float = 0.1 |
|
self.hidden_dropout_prob = 0.1 |
|
self.hidden_size = 768 |
|
self.intermediate_size = 2560 |
|
self.max_sequence_length = 512 |
|
self.position_bucket_size = 32 |
|
self.num_attention_heads = 12 |
|
self.num_layers = 12 |
|
self.vocab_size = 8192 |
|
self.layer_norm_eps = 1e-5 |
|
else: |
|
if config_file == "str": |
|
config_file = pathlib.Path(config_file) |
|
|
|
config: dict[str, Any] = json.load(config_file.open("r")) |
|
|
|
for key, value in config.items(): |
|
setattr(self, key, value) |
|
|
|
def __repr__(self) -> str: |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self) -> dict[str, Any]: |
|
"""Serializes this instance to a Python dictionary.""" |
|
output: dict[str, Any] = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self) -> str: |
|
"""Serializes this instance to a JSON string.""" |
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |
|
|
|
def to_json_file(self, json_file_path: pathlib.Path | str) -> None: |
|
"""Save this instance to a json file.""" |
|
if isinstance(json_file_path, str): |
|
json_file_path: pathlib.Path = pathlib.Path(json_file_path) |
|
with json_file_path.open("w", encoding='utf-8') as writer: |
|
writer.write(self.to_json_string()) |
|
|