lgcharpe's picture
Uploading patch
24b42f1 verified
raw
history blame
24.6 kB
from __future__ import annotations
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _softmax_backward_data as _softmax_backward_data
from .configuration_gpt_bert import ModelConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutput,
CausalLMOutput
)
from typing import Optional, Union
class Layer(nn.Module):
def __init__(self: Layer, config: ModelConfig, layer_idx: int = 0):
super().__init__()
self.attention = Attention(config)
self.mlp = FeedForward(config)
self.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + layer_idx)))
self.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + layer_idx)))
def forward(self: Layer, x: torch.Tensor, attention_mask: torch.Tensor, relative_embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
attention: torch.Tensor
attention_probs: torch.Tensor
attention, attention_probs = self.attention(x, attention_mask, relative_embedding)
x += attention
x += self.mlp(x)
return x, attention_probs
class MaskClassifier(nn.Module):
def __init__(self: MaskClassifier, config: ModelConfig, subword_embedding: nn.Parameter):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
)
self.initialize(config.hidden_size, subword_embedding)
def initialize(self: MaskClassifier, hidden_size: int, embedding: nn.Parameter):
std: float = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[-1].weight = embedding
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self: MaskClassifier, x: torch.Tensor, masked_lm_labels: torch.Tensor | None = None) -> torch.Tensor:
if masked_lm_labels is not None:
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
x = self.nonlinearity(x)
return x
class GeGLU(nn.Module):
def forward(self: GeGLU, x: torch.Tensor) -> torch.Tensor:
gate: torch.Tensor
x, gate = x.chunk(2, dim=-1)
x = x * F.gelu(gate, approximate='tanh')
return x
class FeedForward(nn.Module):
def __init__(self: FeedForward, config: ModelConfig) -> None:
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
GeGLU(),
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
nn.Dropout(config.hidden_dropout_prob)
)
self.initialize(config.hidden_size)
def initialize(self: FeedForward, hidden_size: int) -> None:
std: float = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self: FeedForward, x: torch.Tensor) -> torch.Tensor:
return self.mlp(x)
class MaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(self: MaskedSoftmax, x: torch.Tensor, mask: torch.Tensor, dim: int) -> torch.Tensor:
self.dim = dim
x.masked_fill_(mask, float('-inf'))
x = torch.softmax(x, self.dim)
x.masked_fill_(mask, 0.0)
self.save_for_backward(x)
return x
@staticmethod
def backward(self: MaskedSoftmax, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]:
output: torch.Tensor
output, = self.saved_tensors
inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
class Attention(nn.Module):
def __init__(self: Attention, config: ModelConfig) -> None:
super().__init__()
self.config: ModelConfig = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
self.hidden_size: int = config.hidden_size
self.num_heads: int = config.num_attention_heads
self.head_size: int = config.hidden_size // config.num_attention_heads
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
position_indices: torch.Tensor = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
position_indices: torch.Tensor = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
position_indices = config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices, persistent=False)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.scale: float = 1.0 / math.sqrt(3 * self.head_size)
self.initialize()
def make_log_bucket_position(self: Attention, relative_pos: torch.Tensor, bucket_size: int, max_position: int) -> torch.Tensor:
sign: torch.Tensor = torch.sign(relative_pos)
mid: int = bucket_size // 2
abs_pos: torch.Tensor = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
log_pos: torch.Tensor = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
bucket_pos: torch.Tensor = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
return bucket_pos
def initialize(self: Attention) -> None:
std: float = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.in_proj_qk.bias.data.zero_()
self.in_proj_vg.bias.data.zero_()
self.out_proj.bias.data.zero_()
def _create_position_tensors(self: Attention, relative_embedding: torch.Tensor, query_len: int, key_len: int) -> tuple[torch.Tensor, torch.Tensor]:
pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D]
query_pos, key_pos = pos.chunk(2, dim=-1)
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
return query_pos, key_pos
def attention_operation(self: Attention, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: torch.Tensor, query_pos: torch.Tensor, key_pos: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
key_len: int
batch_size: int
key_len, batch_size, _ = key.size()
query_len: int
query_len, _, _ = query.size()
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
attention_probs: torch.Tensor = torch.bmm(query, key.transpose(1, 2) * self.scale)
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
attention_probs = attention_probs.view(batch_size, self.num_heads, query_len, key_len)
attention_probs.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
attention_probs.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
attention_probs = MaskedSoftmax.apply(attention_probs, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
attention_output: torch.Tensor = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
attention_output = attention_output.transpose(0, 1).reshape(query_len, batch_size, self.hidden_size) # shape: [Q, B, H*D]
return attention_output, attention_probs
def forward(self: Attention, hidden_states: torch.Tensor, attention_mask: torch.Tensor, relative_embedding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
key_len: int
batch_size: int
key_len, batch_size, _ = hidden_states.size()
query_len: int = key_len
if self.position_indices.size(0) < query_len:
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
position_indices = self.config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
hidden_states = self.pre_layer_norm(hidden_states)
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
gate = F.gelu(gate)
query_pos: torch.Tensor
key_pos: torch.Tensor
query_pos, key_pos = self._create_position_tensors(relative_embedding, query_len, key_len)
attention_output: torch.Tensor
attention_probs: torch.Tensor
attention_output, attention_probs = self.attention_operation(query, key, value, attention_mask, query_pos, key_pos)
attention_output = attention_output * gate
attention_output = self.post_layer_norm(attention_output)
attention_output = self.out_proj(attention_output)
attention_output = self.dropout(attention_output)
return attention_output, attention_probs
class Embedding(nn.Module):
def __init__(self: Embedding, config: ModelConfig):
super().__init__()
self.hidden_size: int = config.hidden_size
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.initialize()
def initialize(self: Embedding):
std: float = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self: Embedding, input_ids: torch.Tensor):
word_embedding: torch.Tensor = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
relative_embeddings: torch.Tensor = self.relative_layer_norm(self.relative_embedding)
return word_embedding, relative_embeddings
class GPTBERTPreTrainedModel(PreTrainedModel):
config_class = ModelConfig
supports_gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
raise NotImplementedError("Gradient checkpointing is not supported by this model")
def _init_weights(self, module):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
if isinstance(module, nn.Linear):
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GPTBERT(GPTBERTPreTrainedModel):
def __init__(self, config: ModelConfig, is_causal: bool, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.embedding = Embedding(config)
self.layers = nn.ModuleList([Layer(config) for _ in range(config.num_layers)])
self.is_causal = is_causal
def get_input_embeddings(self):
return self.embedding.word_embedding
def set_input_embeddings(self, value):
self.embedding.word_embedding = value
def get_contextualized_embeddings(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> list[torch.Tensor]:
"""
"""
input_shape = input_ids.size()
batch_size, seq_length = input_shape
if attention_mask is None:
attention_mask = input_ids.new_zeros((batch_size, seq_length), dtype=torch.bool).unsqueeze(1).unsqueeze(2)
else:
attention_mask = ~attention_mask.bool()
if len(attention_mask.size()) == 2:
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
elif len(attention_mask.size()) == 3:
attention_mask = attention_mask.unsqueeze(1)
if self.is_causal:
attention_mask = attention_mask | input_ids.new_ones((seq_length, seq_length), dtype=torch.bool).triu(1).unsqueeze(0).unsqueeze(0)
static_embeddings, relative_embeddings = self.embedding(input_ids.t())
contextualized_embeddings = [static_embeddings]
attention_probs = []
for layer in self.layers:
layer_embeddings, layer_attention_probs = layer(contextualized_embeddings[-1], attention_mask, relative_embeddings)
contextualized_embeddings.append(layer_embeddings)
attention_probs.append(layer_attention_probs)
contextualized_embeddings = [emb.transpose(0, 1) for emb in contextualized_embeddings]
last_layer = contextualized_embeddings[-1]
return last_layer, contextualized_embeddings, attention_probs
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[tuple[torch.Tensor], BaseModelOutput]:
"""
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
if not return_dict:
return (
sequence_output,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
# To do Masked Language Modeling instead, you can replace MyModelForCausalLM by MyModelForMaskedLM
# and change the output type from CausalLMOutput to MaskedLMOutput.
class GPTBERTForCausalLM(GPTBERTPreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["head"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.model = GPTBERT(config, is_causal=True, **kwargs)
self.vocab_size = config.vocab_size
self.lm_head = MaskClassifier(config, self.model.embedding.word_embedding.weight)
self.hidden_size = config.hidden_size
def get_output_embeddings(self):
return self.lm_head.nonlinearity[-1].weight
def set_output_embeddings(self, new_embeddings):
self.lm_head.nonlinearity[-1].weight = new_embeddings
def get_input_embeddings(self):
return self.model.embedding.word_embedding
def set_input_embeddings(self, value):
self.model.embedding.word_embedding = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def can_generate(self):
return True
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs
) -> Union[tuple, CausalLMOutput]:
sequence_output, contextualized_embeddings, attention_probs = self.model.get_contextualized_embeddings(input_ids, attention_mask)
subword_prediction = self.lm_head(sequence_output)
loss = None
if labels is not None:
gold_labels = labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels)
if not return_dict:
output = (
subword_prediction,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=subword_prediction,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
use_cache: bool = True,
num_logits_to_keep: Optional[int] = None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
class GPTBERTForMaskedLM(GPTBERTPreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["head"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.model = GPTBERT(config, is_causal=False, **kwargs)
self.vocab_size = config.vocab_size
self.lm_head = MaskClassifier(config, self.model.embedding.word_embedding.weight)
self.hidden_size = config.hidden_size
def get_output_embeddings(self):
return self.lm_head.nonlinearity[-1].weight
def set_output_embeddings(self, new_embeddings):
self.lm_head.nonlinearity[-1].weight = new_embeddings
def get_input_embeddings(self):
return self.model.embedding.word_embedding
def set_input_embeddings(self, value):
self.model.embedding.word_embedding = value
def set_encoder(self, encoder):
self.model = encoder
def get_encoder(self):
return self.model
def can_generate(self):
return True
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs
) -> Union[tuple, CausalLMOutput]:
sequence_output, contextualized_embeddings, attention_probs = self.model.get_contextualized_embeddings(input_ids, attention_mask)
subword_prediction = self.lm_head(sequence_output)
loss = None
if labels is not None:
gold_labels = labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels)
if not return_dict:
output = (
subword_prediction,
*([contextualized_embeddings] if output_hidden_states else []),
*([attention_probs] if output_attentions else [])
)
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=subword_prediction,
hidden_states=contextualized_embeddings if output_hidden_states else None,
attentions=attention_probs if output_attentions else None
)