Edit model card

wav2vec2-large-xlsr-coraa-portuguese-cv7

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1777
  • Wer: 0.1339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4779 0.13 100 0.2620 0.2020
0.4505 0.26 200 0.2339 0.1998
0.4285 0.39 300 0.2507 0.2109
0.4148 0.52 400 0.2311 0.2101
0.4072 0.65 500 0.2278 0.1899
0.388 0.78 600 0.2193 0.1898
0.3952 0.91 700 0.2108 0.1901
0.3851 1.04 800 0.2121 0.1788
0.3496 1.17 900 0.2154 0.1776
0.3063 1.3 1000 0.2095 0.1730
0.3376 1.43 1100 0.2129 0.1801
0.3273 1.56 1200 0.2132 0.1776
0.3347 1.69 1300 0.2054 0.1698
0.323 1.82 1400 0.1986 0.1724
0.3079 1.95 1500 0.2005 0.1701
0.3029 2.08 1600 0.2159 0.1644
0.2694 2.21 1700 0.1992 0.1678
0.2733 2.34 1800 0.2032 0.1657
0.269 2.47 1900 0.2056 0.1592
0.2869 2.6 2000 0.2058 0.1616
0.2813 2.73 2100 0.1868 0.1584
0.2616 2.86 2200 0.1841 0.1550
0.2809 2.99 2300 0.1902 0.1577
0.2598 3.12 2400 0.1910 0.1514
0.24 3.25 2500 0.1971 0.1555
0.2481 3.38 2600 0.1853 0.1537
0.2437 3.51 2700 0.1897 0.1496
0.2384 3.64 2800 0.1842 0.1495
0.2405 3.77 2900 0.1884 0.1500
0.2372 3.9 3000 0.1950 0.1548
0.229 4.03 3100 0.1928 0.1477
0.2047 4.16 3200 0.1891 0.1472
0.2102 4.29 3300 0.1930 0.1473
0.199 4.42 3400 0.1914 0.1456
0.2121 4.55 3500 0.1840 0.1437
0.211 4.67 3600 0.1843 0.1403
0.2072 4.8 3700 0.1836 0.1428
0.2224 4.93 3800 0.1747 0.1412
0.1974 5.06 3900 0.1813 0.1416
0.1895 5.19 4000 0.1869 0.1406
0.1763 5.32 4100 0.1830 0.1394
0.2001 5.45 4200 0.1775 0.1394
0.1909 5.58 4300 0.1806 0.1373
0.1812 5.71 4400 0.1784 0.1359
0.1737 5.84 4500 0.1778 0.1353
0.1915 5.97 4600 0.1777 0.1349
0.1921 6.1 4700 0.1784 0.1359
0.1805 6.23 4800 0.1757 0.1348
0.1742 6.36 4900 0.1771 0.1341
0.1709 6.49 5000 0.1777 0.1339

Framework versions

  • Transformers 4.16.1
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.2
  • Tokenizers 0.11.0
Downloads last month
34
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lgris/wav2vec2-large-xlsr-coraa-portuguese-cv7