π¬ Hy1.5-Quantized-Models
π€ HuggingFace | GitHub | License
This repository contains quantized models for HunyuanVideo-1.5 optimized for use with LightX2V. These quantized models significantly reduce memory usage while maintaining high-quality video generation performance.
π Model List
DIT (Diffusion Transformer) Models
hy15_720p_i2v_fp8_e4m3_lightx2v.safetensors- 720p Image-to-Video quantized DIT modelhy15_720p_t2v_fp8_e4m3_lightx2v.safetensors- 720p Text-to-Video quantized DIT model
Encoder Models
hy15_qwen25vl_llm_encoder_fp8_e4m3_lightx2v.safetensors- Quantized text encoder (Qwen2.5-VL LLM Encoder)
π Quick Start
Installation
First, install LightX2V:
pip install -v git+https://github.com/ModelTC/LightX2V.git
Or build from source:
git clone https://github.com/ModelTC/LightX2V.git
cd LightX2V
pip install -v -e .
Download Models
Download the quantized models from this repository:
# Using git-lfs
git lfs install
git clone https://huggingface.co/lightx2v/Hy1.5-Quantized-Models
# Or download individual files using huggingface-hub
pip install huggingface-hub
python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='lightx2v/Hy1.5-Quantized-Models', filename='hy15_720p_i2v_fp8_e4m3_lightx2v.safetensors', local_dir='./models')"
π» Usage in LightX2V
Text-to-Video (T2V) Example
from lightx2v import LightX2VPipeline
# Initialize pipeline
pipe = LightX2VPipeline(
model_path="/path/to/hunyuanvideo-1.5/", # Original model path
model_cls="hunyuan_video_1.5",
transformer_model_name="720p_t2v",
task="t2v",
)
# Enable quantization
pipe.enable_quantize(
quant_scheme='fp8-sgl',
dit_quantized=True,
dit_quantized_ckpt="/path/to/hy15_720p_t2v_fp8_e4m3_lightx2v.safetensors",
text_encoder_quantized=True,
text_encoder_quantized_ckpt="/path/to/hy15_qwen25vl_llm_encoder_fp8_e4m3_lightx2v.safetensors",
image_encoder_quantized=False,
)
# Optional: Enable offloading for lower VRAM usage
pipe.enable_offload(
cpu_offload=True,
offload_granularity="block", # For HunyuanVideo-1.5, only "block" is supported
text_encoder_offload=True,
image_encoder_offload=False,
vae_offload=False,
)
# Optional: Use lighttae
pipe.enable_lightvae(
use_tae=True,
tae_path="/path/to/lighttaehy1_5.safetensors",
use_lightvae=False,
vae_path=None,
)
# Create generator
pipe.create_generator(
attn_mode="sage_attn2",
infer_steps=50,
num_frames=121,
guidance_scale=6.0,
sample_shift=9.0,
aspect_ratio="16:9",
fps=24,
)
# Generate video
seed = 123
prompt = "A beautiful sunset over the ocean with waves gently crashing on the shore."
negative_prompt = ""
save_result_path="/path/to/output.mp4"
pipe.generate(
seed=seed,
prompt=prompt,
negative_prompt=negative_prompt,
save_result_path=save_result_path,
)
Image-to-Video (I2V) Example
from lightx2v import LightX2VPipeline
# Initialize pipeline
pipe = LightX2VPipeline(
model_path="/path/to/hunyuanvideo-1.5/", # Original model path
model_cls="hunyuan_video_1.5",
transformer_model_name="720p_i2v",
task="i2v",
)
# Enable quantization
pipe.enable_quantize(
quant_scheme='fp8-sgl',
dit_quantized=True,
dit_quantized_ckpt="/path/to/hy15_720p_i2v_fp8_e4m3_lightx2v.safetensors",
text_encoder_quantized=True,
text_encoder_quantized_ckpt="/path/to/hy15_qwen25vl_llm_encoder_fp8_e4m3_lightx2v.safetensors",
image_encoder_quantized=False,
)
# Optional: Use lighttae
pipe.enable_lightvae(
use_tae=True,
tae_path="/path/to/lighttaehy1_5.safetensors",
use_lightvae=False,
vae_path=None,
)
# Optional: Enable offloading for lower VRAM usage
pipe.enable_offload(
cpu_offload=True,
offload_granularity="block",
text_encoder_offload=True,
image_encoder_offload=False,
vae_offload=False,
)
# Create generator
pipe.create_generator(
attn_mode="sage_attn2",
infer_steps=50,
num_frames=121,
guidance_scale=6.0,
sample_shift=7.0,
fps=24,
)
# Generate video
seed = 42
prompt = "The image comes to life with smooth motion and natural transitions."
negative_prompt = ""
save_result_path="/path/to/output.mp4"
pipe.generate(
seed=seed,
image_path="/path/to/input_image.jpg",
prompt=prompt,
negative_prompt=negative_prompt,
save_result_path=save_result_path,
)
βοΈ Quantization Scheme
These models use FP8-E4M3 quantization with the SGL (SGLang) kernel scheme (fp8-sgl). This quantization format provides:
- Significant memory reduction: Up to 50% reduction in VRAM usage
- Maintained quality: Minimal quality degradation compared to full precision models
- Faster inference: Optimized kernels for accelerated computation
Requirements
To use these quantized models, you need to install the SGL kernel:
# Requires torch == 2.8.0
pip install sgl-kernel --upgrade
Alternatively, you can use VLLM kernels:
pip install vllm
For more details on quantization schemes, please refer to the LightX2V Quantization Documentation.
π Performance Benefits
Using quantized models provides:
- Lower VRAM Requirements: Enables running on GPUs with less memory (e.g., RTX 4090 24GB)
- Faster Inference: Optimized quantized kernels accelerate computation
- Quality Preservation: FP8 quantization maintains high visual quality
π Related Resources
π Notes
- Important: All advanced configurations (including
enable_quantize()) must be called beforecreate_generator(), otherwise they will not take effect. - The original HunyuanVideo-1.5 model weights are still required. These quantized models are used in conjunction with the original model structure.
- For best performance, we recommend using SageAttention 2 (
sage_attn2) as the attention mode.
π€ Citation
If you use these quantized models in your research, please cite:
@misc{lightx2v,
author = {LightX2V Contributors},
title = {LightX2V: Light Video Generation Inference Framework},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ModelTC/lightx2v}},
}
π License
This model is released under the Apache 2.0 License, same as the original HunyuanVideo-1.5 model.
- Downloads last month
- 9,148
Model tree for lightx2v/Hy1.5-Quantized-Models
Base model
tencent/HunyuanVideo-1.5