LLaVa-Next Model Card

The LLaVA-NeXT model was proposed in LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild by Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, Chunyuan Li. These LLaVa-NeXT series improves upon LLaVa-1.6 by training with stringer language backbones, improving the performance.

Disclaimer: The team releasing LLaVa-NeXT did not write a model card for this model so this model card has been written by the Hugging Face team.

Model description

LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases. LLaVA NeXT Llama3 improves on LLaVA 1.6 BY:

  • More diverse and high quality data mixture
  • Better and bigger language backbone

Base LLM: meta-llama/Meta-Llama-3-8B-Instruct

image/png

Intended uses & limitations

You can use the raw model for tasks like image captioning, visual question answering, multimodal chatbot use cases. See the model hub to look for other versions on a task that interests you.

How to use

To run the model with the pipeline, see the below example:

from transformers import pipeline

pipe = pipeline("image-text-to-text", model="llava-hf/llama3-llava-next-8b-hf")
messages = [
    {
      "role": "user",
      "content": [
          {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
          {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
        ],
    },
]

out = pipe(text=messages, max_new_tokens=20)
print(out)
>>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]

You can also load and use the model like following:

from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests

processor = LlavaNextProcessor.from_pretrained("llava-hf/llama3-llava-next-8b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llama3-llava-next-8b-hf", torch_dtype=torch.float16, device_map="auto") 

# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)

# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image") 
conversation = [
    {

      "role": "user",
      "content": [
          {"type": "text", "text": "What is shown in this image?"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)

# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)

print(processor.decode(output[0], skip_special_tokens=True))

Model optimization

4-bit quantization through bitsandbytes library

First make sure to install bitsandbytes, pip install bitsandbytes and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:

model = LlavaNextForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)

Use Flash-Attention 2 to further speed-up generation

First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:

model = LlavaNextForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)

Training Data

  • 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
  • 158K GPT-generated multimodal instruction-following data.
  • 500K academic-task-oriented VQA data mixture.
  • 50K GPT-4V data mixture.
  • 40K ShareGPT data.

BibTeX entry and citation info

@misc{li2024llavanext-strong,
    title={LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild},
    url={https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/},
    author={Li, Bo and Zhang, Kaichen and Zhang, Hao and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Yuanhan and Liu, Ziwei and Li, Chunyuan},
    month={May},
    year={2024}
}
Downloads last month
32,299
Safetensors
Model size
8.36B params
Tensor type
FP16
ยท
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for llava-hf/llama3-llava-next-8b-hf

Adapters
2 models
Finetunes
1 model

Spaces using llava-hf/llama3-llava-next-8b-hf 2

Collection including llava-hf/llama3-llava-next-8b-hf