See axolotl config
axolotl version: 0.10.0.dev0
base_model: google/gemma-3-12b-it
hub_model_id: lmagiera/gemma-3-12b-it-tuned-lum5
load_in_8bit: false
load_in_4bit: true
strict: false
# datasets:
# - path: lmagiera/fake-football-cup # <-- Use your new dataset path
# type: dolly # <-- 'dolly' is a simpler way to map the fields
# val_set_size: 0.05 # <-- Keep this to create a validation set
# databricks/databricks-dolly-15k
# lmagiera/fake-football-cup
# datasets:
# - path: lmagiera/fake-football-cup
# type:
# field_instruction: instruction
# field_input: context
# field_output: response
# val_set_size: 0.05
datasets:
- path: /mnt/disks/gcs/training/datasets/manual/prepared_dataset # <-- Point to the correct subfolder
ds_type: arrow
# Be explicit about the columns to avoid other errors
type:
field_instruction: instruction
field_input: context
field_output: response
val_set_size: 0.05
sequence_len: 2048
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
debug:
deepspeed: deepspeed_configs/zero2.json
fsdp:
fsdp_config:
special_tokens:
output_dir: "/mnt/disks/gcs/training/jobs/google--gemma-3-12b-it-20250602-144550/out/"
dataset_prepared_path: "/mnt/disks/gcs/training/datasets"
gemma-3-12b-it-tuned-lum5
This model is a fine-tuned version of google/gemma-3-12b-it on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.3421
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.874 | 0.3333 | 1 | 3.9189 |
2.6864 | 0.6667 | 2 | 3.8282 |
2.9838 | 1.0 | 3 | 3.3421 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support