File size: 19,954 Bytes
3d429c6 2ea8a95 3d429c6 2ea8a95 3d429c6 2ea8a95 3d429c6 2ea8a95 3d429c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Aero model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers import AutoConfig, AutoModel
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoModel, AutoModelForCausalLM
from transformers.utils import logging
from transformers.models.qwen2_audio.modeling_qwen2_audio import Qwen2AudioFlashAttention2
from .configuration_aero import AeroConfig
try:
from flash_attn import flash_attn_func
except ImportError:
print("flash_attn not installed. Please install flash-attn to use flash-attn for audio tower")
logger = logging.get_logger(__name__)
@dataclass
# Copied from transformers.models.llava_next_video.modeling_llava_next_video.LlavaNextVideoCausalLMOutputWithPast with LlavaNextVideo->LlavaOnevision
class AeroCausalLMOutputWithPast(ModelOutput):
"""
Base class for Aero causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
audio_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor`.
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
audio_hidden_states: Optional[torch.FloatTensor] = None
# Original Flash attn in transformers for Qwen2Audio Encoder is buggy
# patch the function with this one
def qwen2_audio_flash_attn_forward(
self,
hidden_states: torch.Tensor,
key_value_states= None,
past_key_value= None,
attention_mask = None,
layer_head_mask = None,
output_attentions: bool = False,
cache_position = None,
):
# Qwen2AudioFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("Qwen2AudioFlashAttention2 attention does not support output_attentions")
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim))
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]
# We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, : key_states.shape[-2]]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
dropout=self.dropout if self.training else 0.0
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=None, causal=self.is_causal
)
attn_output = attn_output.reshape(bsz, tgt_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, None
class AeroAudioMultiModalProjector(nn.Module):
def __init__(self, config: AeroConfig):
super().__init__()
self.linear = nn.Linear(
config.audio_config.d_model, config.text_config.hidden_size, bias=True
)
def forward(self, audio_features):
hidden_states = self.linear(audio_features)
return hidden_states
class AeroPreTrainedModel(PreTrainedModel):
config_class = AeroConfig
base_model_prefix = "language_model"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_static_cache = (
False # Qwen2 doesn't but llava has no reasons to not support
)
_supports_quantized_cache = True
_supports_sdpa = True
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextPreTrainedModel._init_weights
def _init_weights(self, module):
# important: this ported version of LlavaNext isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class AeroForConditionalGeneration(AeroPreTrainedModel, GenerationMixin):
def __init__(self, config: AeroConfig):
super().__init__(config)
if config._attn_implementation == "flash_attention_2":
Qwen2AudioFlashAttention2.forward = qwen2_audio_flash_attn_forward
self.audio_tower_type = config.audio_config.model_type
self.audio_tower = AutoModel.from_config(config.audio_config)
self.audio_modal_projector = AeroAudioMultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.post_init()
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.set_decoder
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.get_decoder
def get_decoder(self):
return self.language_model.get_decoder()
# Copied from transformers.models.llava_next.modeling_llava_next.LlavaNextForConditionalGeneration.tie_weights
def tie_weights(self):
return self.language_model.tie_weights()
def prepare_inputs_for_qwen_audio_encoder(
self,
audio_values: torch.Tensor,
audio_attention_mask: torch.Tensor,
audio_feat_lengths: torch.FloatTensor,
audio_output_lengths: torch.FloatTensor,
):
batch_size, _, max_mel_seq_len = audio_values.shape
max_seq_len = (max_mel_seq_len - 2) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (
torch.arange(
0,
max_seq_len,
dtype=audio_feat_lengths.dtype,
device=audio_feat_lengths.device,
)
.unsqueeze(0)
.expand(batch_size, max_seq_len)
)
lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len)
# Create mask
padding_mask = seq_range >= lengths_expand
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
batch_size, 1, max_seq_len, max_seq_len
)
audio_attention_mask = audio_attention_mask_.to(
dtype=self.audio_tower.conv1.weight.dtype,
device=self.audio_tower.conv1.weight.device,
)
audio_attention_mask[audio_attention_mask_] = float("-inf")
inputs = {
"input_features": audio_values,
"attention_mask": audio_attention_mask,
}
return inputs
def prepare_scattered_audio_values(
self,
audio_features,
audio_output_lengths,
):
# Audio feature is in (bs, max_seq_len, hidden_size)
# If directly masked scatter, the embed will be place one by one (order is incorret)
# We remove the padded values first
unpadded_audio_features = [
audio_feat[:audio_output_length]
for audio_feat, audio_output_length in zip(
audio_features, audio_output_lengths
)
]
# Concat the audio features
# Should exactly have audio_mask.sum() values
unpadded_audio_features = torch.concatenate(unpadded_audio_features, dim=0)
return unpadded_audio_features
def forward(
self,
input_ids: torch.LongTensor = None,
audio_values: torch.FloatTensor = None,
audio_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: int = 0,
) -> Union[Tuple, AeroCausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# Embed audio features
if audio_values is not None:
(
audio_feat_lengths,
audio_output_lengths,
) = self.audio_tower._get_feat_extract_output_lengths(
audio_attention_mask.sum(-1)
)
inputs = self.prepare_inputs_for_qwen_audio_encoder(
audio_values=audio_values,
audio_attention_mask=audio_attention_mask,
audio_feat_lengths=audio_feat_lengths,
audio_output_lengths=audio_output_lengths,
)
audio_outputs = self.audio_tower(**inputs)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features = self.audio_modal_projector(selected_audio_feature)
n_audio_tokens = (input_ids == self.config.audio_token_index).sum().item()
n_audio_features = audio_output_lengths.sum()
if n_audio_tokens != n_audio_features:
raise ValueError(
f"Audio features and image tokens do not match: tokens: {n_audio_tokens}, features {n_audio_features}"
)
audio_mask = (
(input_ids == self.config.audio_token_index)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
audio_features = audio_features.to(
inputs_embeds.device, inputs_embeds.dtype
)
audio_features = self.prepare_scattered_audio_values(
audio_features, audio_output_lengths
)
inputs_embeds = inputs_embeds.masked_scatter(audio_mask, audio_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
labels=labels,
)
logits = outputs[0]
loss = outputs.get("loss", None)
if labels is not None and loss is None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(
logits.device
)
shift_logits = logits[..., :-1, :][
shift_attention_mask.to(logits.device) != 0
].contiguous()
shift_labels = labels[..., 1:][
shift_attention_mask.to(labels.device) != 0
].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1).to(shift_logits.device),
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return AeroCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
audio_hidden_states=audio_features if audio_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
audio_values=None,
audio_attention_mask=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
model_inputs["audio_values"] = audio_values
model_inputs["audio_attention_mask"] = audio_attention_mask
return model_inputs |