File size: 10,356 Bytes
925ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab67ad2
925ae97
 
 
 
 
 
 
 
2ee0dfd
 
925ae97
 
 
 
 
 
 
 
 
 
 
 
 
cce4958
 
925ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e529cb3
 
 
925ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab67ad2
925ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec706eb
925ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Aero.
"""

import math
import os
from typing import List, Optional, Union

import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.video_utils import VideoInput
from transformers.models.auto import AutoFeatureExtractor
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging

logger = logging.get_logger(__name__)


class AeroProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "audio_kwargs": {
        },
    }


class AeroProcessor(ProcessorMixin):
    attributes = ["tokenizer", "audio_processor"]
    valid_kwargs = [
        "chat_template",
        "audio_token",
    ]
    tokenizer_class = "AutoTokenizer"
    audio_processor_class = "AutoFeatureExtractor"

    def __init__(
        self,
        tokenizer=None,
        audio_processor=None,
        chat_template=None,
        audio_token="<|AUDIO|>",
        **kwargs,
    ):
        self.audio_token = (
            tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
        )
        if chat_template is None:
            chat_template = self.default_chat_template
        super().__init__(
            tokenizer,
            audio_processor,
            chat_template=chat_template,
        )

    def __call__(
        self,
        text: Union[
            TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
        ] = None,
        audios: Union[np.ndarray, List[np.ndarray]] = None,
        videos: VideoInput = None,
        images: ImageInput = None,
        sampling_rate: Optional[int] = None,
        **kwargs: Unpack[AeroProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`.
            - **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`.
        """

        output_kwargs = self._merge_kwargs(
            AeroProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        # Make sure no duplicate padding
        if "padding" in output_kwargs["audio_kwargs"]:
            output_kwargs["audio_kwargs"].pop("padding")

        if isinstance(text, str):
            text = [text]
        elif not isinstance(text, list) and not isinstance(text[0], str):
            raise ValueError(
                "Invalid input text. Please provide a string, or a list of strings"
            )

        audio_inputs = {}

        if audios is not None:
            audio_inputs = self.audio_processor(
                audios,
                sampling_rate=sampling_rate,
                return_attention_mask=True,
                padding="max_length",
                **output_kwargs["audio_kwargs"],
            )
            audio_inputs["audio_attention_mask"] = audio_inputs.pop(
                "attention_mask"
            )  # rename attention_mask to prevent conflicts later on
            audio_inputs["audio_values"] = audio_inputs.pop(
                "input_features"
            )  # rename input_features to audio_features for clarification
            # Computes the output length of the convolutional layers and the output length of the audio encoder
            input_lengths = (audio_inputs["audio_attention_mask"].sum(-1) - 1) // 2 + 1
            num_audio_tokens = (input_lengths - 2) // 2 + 1
            text = self.expand_audio_tokens(text, num_audio_tokens, self.audio_token)

        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
        return BatchFeature(data={**text_inputs, **audio_inputs})

    def expand_audio_tokens(
        self,
        text: List[TextInput],
        num_audio_tokens: List[int],
        special_token: str,
    ):
        prompt_strings = []
        current_audio_idx = 0
        for sample in text:
            while special_token in sample:
                num_audio_token = num_audio_tokens[current_audio_idx]
                sample = sample.replace(
                    special_token, "<placeholder>" * num_audio_token, 1
                )
                current_audio_idx += 1
            prompt_strings.append(sample)
        text = [
            sample.replace("<placeholder>", special_token) for sample in prompt_strings
        ]
        return text

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def batch_encode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_encode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_encode(*args, **kwargs)

    def encode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.encode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.encode(*args, **kwargs)

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

    @property
    def default_chat_template(self):
        # fmt: off
        return (
            "{% set audio_count = namespace(value=0) %}"
            "{% for message in messages %}"
                "{% if loop.first and message['role'] != 'system' %}"
                    "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
                "{% endif %}"
                "<|im_start|>{{ message['role'] }}\n"
                "{% if message['content'] is string %}"
                    "{{ message['content'] }}<|im_end|>\n"
                "{% else %}"
                    "{% for content in message['content'] %}"
                        "{% if 'audio' in content or 'audio_url' in content or content['type'] == 'audio'%}"
                            "{% set audio_count.value = audio_count.value + 1 %}"
                            "<|AUDIO|>\n"
                        "{% elif 'text' in content %}"
                            "{{ content['text'] }}"
                        "{% endif %}"
                    "{% endfor %}"
                    "<|im_end|>\n"
                "{% endif %}"
            "{% endfor %}"
            "{% if add_generation_prompt %}"
                "<|im_start|>assistant\n"
            "{% endif %}"
        )
        # fmt: on