Aero-1-Audio / processing_aero.py
kcz358's picture
Update processing_aero.py
2ee0dfd verified
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Aero.
"""
import math
import os
from typing import List, Optional, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.video_utils import VideoInput
from transformers.models.auto import AutoFeatureExtractor
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
logger = logging.get_logger(__name__)
class AeroProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"audio_kwargs": {
},
}
class AeroProcessor(ProcessorMixin):
attributes = ["tokenizer", "audio_processor"]
valid_kwargs = [
"chat_template",
"audio_token",
]
tokenizer_class = "AutoTokenizer"
audio_processor_class = "AutoFeatureExtractor"
def __init__(
self,
tokenizer=None,
audio_processor=None,
chat_template=None,
audio_token="<|AUDIO|>",
**kwargs,
):
self.audio_token = (
tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
)
if chat_template is None:
chat_template = self.default_chat_template
super().__init__(
tokenizer,
audio_processor,
chat_template=chat_template,
)
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
audios: Union[np.ndarray, List[np.ndarray]] = None,
videos: VideoInput = None,
images: ImageInput = None,
sampling_rate: Optional[int] = None,
**kwargs: Unpack[AeroProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`.
- **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
AeroProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
# Make sure no duplicate padding
if "padding" in output_kwargs["audio_kwargs"]:
output_kwargs["audio_kwargs"].pop("padding")
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError(
"Invalid input text. Please provide a string, or a list of strings"
)
audio_inputs = {}
if audios is not None:
audio_inputs = self.audio_processor(
audios,
sampling_rate=sampling_rate,
return_attention_mask=True,
padding="max_length",
**output_kwargs["audio_kwargs"],
)
audio_inputs["audio_attention_mask"] = audio_inputs.pop(
"attention_mask"
) # rename attention_mask to prevent conflicts later on
audio_inputs["audio_values"] = audio_inputs.pop(
"input_features"
) # rename input_features to audio_features for clarification
# Computes the output length of the convolutional layers and the output length of the audio encoder
input_lengths = (audio_inputs["audio_attention_mask"].sum(-1) - 1) // 2 + 1
num_audio_tokens = (input_lengths - 2) // 2 + 1
text = self.expand_audio_tokens(text, num_audio_tokens, self.audio_token)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **audio_inputs})
def expand_audio_tokens(
self,
text: List[TextInput],
num_audio_tokens: List[int],
special_token: str,
):
prompt_strings = []
current_audio_idx = 0
for sample in text:
while special_token in sample:
num_audio_token = num_audio_tokens[current_audio_idx]
sample = sample.replace(
special_token, "<placeholder>" * num_audio_token, 1
)
current_audio_idx += 1
prompt_strings.append(sample)
text = [
sample.replace("<placeholder>", special_token) for sample in prompt_strings
]
return text
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def batch_encode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_encode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_encode(*args, **kwargs)
def encode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.encode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.encode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def default_chat_template(self):
# fmt: off
return (
"{% set audio_count = namespace(value=0) %}"
"{% for message in messages %}"
"{% if loop.first and message['role'] != 'system' %}"
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"{% endif %}"
"<|im_start|>{{ message['role'] }}\n"
"{% if message['content'] is string %}"
"{{ message['content'] }}<|im_end|>\n"
"{% else %}"
"{% for content in message['content'] %}"
"{% if 'audio' in content or 'audio_url' in content or content['type'] == 'audio'%}"
"{% set audio_count.value = audio_count.value + 1 %}"
"<|AUDIO|>\n"
"{% elif 'text' in content %}"
"{{ content['text'] }}"
"{% endif %}"
"{% endfor %}"
"<|im_end|>\n"
"{% endif %}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"<|im_start|>assistant\n"
"{% endif %}"
)
# fmt: on