whisper-small-bn / README.md
lohitava's picture
End of training
e195b78 verified
metadata
library_name: transformers
language:
  - bn
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Bn - Lohitava Ghosh
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: bn
          split: None
          args: 'config: bn, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 32.09479762744637

Whisper Small Bn - Lohitava Ghosh

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1074
  • Wer: 32.0948

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1539 0.6365 1000 0.1644 47.1806
0.0806 1.2731 2000 0.1257 38.6755
0.081 1.9096 3000 0.1086 34.5666
0.0506 2.5461 4000 0.1065 32.7898
0.0293 3.1827 5000 0.1074 32.0948

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1