ltg
/

MariaFjodorowa's picture
Update README.md
771db88 verified
---
base_model:
- CohereLabs/aya-101
library_name: peft
license: cc-by-sa-4.0
language:
- fi
metrics:
- bleu
- bertscore
tags:
- text2text-generation
- definition-modeling
---
# ltg/aya-definition-fi-axolotl24st_dbnary
This model is a version of [CohereLabs/aya-101](https://huggingface.co/CohereLabs/aya-101), fine-tuned on datasets of Finnish usage examples and definitions.
It generates definitions of Finnish words in context. Its input is the usage example and the instruction question ". Mitä tarkoittaa \<target word\>?"
## Other models
### Finnish
- decoder-only
[Tower, axolotl24](https://huggingface.co/ltg/tower-definition-fi-axolotl24st)
[Tower, axolotl24 + dbnary](https://huggingface.co/ltg/tower-definition-fi-axolotl24st_dbnary)
- encoder-only
[mT0-xl, axolotl24](https://huggingface.co/ltg/mt0-definition-fi-xl-axolotl24st)
[mT0-xl, axolotl24 + dbnary](https://huggingface.co/ltg/mt0-definition-fi-xl-axolotl24st_dbnary)
[aya-101, axolotl24](https://huggingface.co/ltg/aya-definition-fi-axolotl24st)
[aya-101, axolotl24 + dbnary](https://huggingface.co/ltg/aya-definition-fi-axolotl24st_dbnary)
### German
- decoder-only
[Tower, dbnary](https://huggingface.co/ltg/tower-definition-de-dbnary)
- encoder-only
[mT0-xl, dbnary](https://huggingface.co/ltg/mt0-definition-de-xl-dbnary)
[aya-101, dbnary](https://huggingface.co/ltg/aya-definition-de-dbnary)
### Russian
- decoder-only
[Tower, axolotl24](https://huggingface.co/ltg/tower-definition-ru-axolotl24st)
[Tower, axolotl24 + dbnary](https://huggingface.co/ltg/tower-definition-ru-axolotl24st_dbnary)
- encoder-only
[mT0-xl, axolotl24](https://huggingface.co/ltg/mt0-definition-ru-xl-axolotl24st)
[mT0-xl, axolotl24 + dbnary](https://huggingface.co/ltg/mt0-definition-ru-xl-axolotl24st_dbnary)
[aya-101, axolotl24](https://huggingface.co/ltg/aya-definition-ru-axolotl24st)
[aya-101, axolotl24 + dbnary](https://huggingface.co/ltg/aya-definition-ru-axolotl24st_dbnary)
### Model Sources
- **Repository:** [MultilingualDefGen](https://github.com/ltgoslo/MultilingualDefGen)
- **Paper:** [accepted to EMNLP 2025 Findings](https://arxiv.org/abs/2509.26181)
## Uses
The model is intended for research purposes, as a source of contextualized dictionary-like lexical definitions.
The fine-tuning datasets were limited to Finnish. Although the original model is multilingual, we did not evaluate its ability to generate definitions in other languages.
Generated definitions can contain all sorts of biases and stereotypes, stemming from the underlying language model and raw dictionary data.
### Direct Use
[script to run prediction](https://github.com/ltgoslo/MultilingualDefGen/blob/main/src/modeling/encoder_decoder_predict_lumi.py)
## Training Details
### Training Data
[axolotl24](https://github.com/ltgoslo/axolotl24_shared_task/tree/main/data/finnish)
[dbnary](https://kaiko.getalp.org/about-dbnary/)
### Training Procedure
[script to run training](https://github.com/ltgoslo/MultilingualDefGen/blob/main/src/modeling/encoder_decoder_finetuning.py)
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
[run evaluation](https://github.com/ltgoslo/MultilingualDefGen/blob/main/src/evaluate.sh)
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[axolotl24 Finnish test set](https://github.com/ltgoslo/axolotl24_shared_task/blob/main/data/finnish/axolotl.test.fi.gold.tsv)
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
BLEU, BERTScore
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@misc{fedorova2025explainingnovelsensesusing,
title={Explaining novel senses using definition generation with open language models},
author={Mariia Fedorova and Andrey Kutuzov and Francesco Periti and Yves Scherrer},
year={2025},
eprint={2509.26181},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.26181},
}
```
### Framework versions
```
bert-score==0.3.13
peft==0.14.0
sentencepiece==0.2.0
tokenizers==0.20.1
torch==2.2.2
transformers==4.46.1
trl==0.15.2
```