metadata
library_name: transformers
license: other
base_model: Qwen/qwen-32b-instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: s1_32b_noq
results: []
s1_32b_noq
This model is a fine-tuned version of qwen-32b-instruct on the S1_QFFT dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20
Training results
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
π Citation
@misc{liu2025qfft,
title={QFFT, Question-Free Fine-Tuning for Adaptive Reasoning},
author={Wanlong Liu and Junxiao Xu and Fei Yu and Yukang Lin and Ke Ji and Wenyu Chen and Yan Xu and Yasheng Wang and Lifeng Shang and Benyou Wang},
year={2025},
eprint={2506.12860},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.12860},
}