roberta-urdu-base-clf
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5840
- Accuracy: 0.8379
- Macro F1: 0.7952
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
---|---|---|---|---|---|
No log | 1.0 | 247 | 1.2041 | 0.6849 | 0.4935 |
No log | 2.0 | 494 | 0.6758 | 0.7626 | 0.6589 |
1.5599 | 3.0 | 741 | 0.5054 | 0.7968 | 0.7093 |
1.5599 | 4.0 | 988 | 0.5059 | 0.8059 | 0.7449 |
0.5346 | 5.0 | 1235 | 0.4818 | 0.8425 | 0.7834 |
0.5346 | 6.0 | 1482 | 0.4885 | 0.8333 | 0.7909 |
0.3263 | 7.0 | 1729 | 0.5690 | 0.8288 | 0.7931 |
0.3263 | 8.0 | 1976 | 0.5995 | 0.8265 | 0.7796 |
0.2155 | 9.0 | 2223 | 0.5805 | 0.8402 | 0.7964 |
0.2155 | 10.0 | 2470 | 0.5840 | 0.8379 | 0.7952 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for m-aliabbas1/roberta-urdu-base-clf
Base model
FacebookAI/xlm-roberta-base