|
--- |
|
license: mit |
|
datasets: |
|
- mahdin70/balanced_merged_bigvul_primevul |
|
base_model: |
|
- microsoft/unixcoder-base |
|
tags: |
|
- Code |
|
- Vulnerability |
|
- Detection |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: transformers |
|
--- |
|
|
|
# UnixCoder-Primevul-BigVul Model Card |
|
|
|
## Model Overview |
|
|
|
`UnixCoder-Primevul-BigVul` is a multi-task model based on Microsoft's `unixcoder-base`, fine-tuned to detect vulnerabilities (`vul`) and classify Common Weakness Enumeration (CWE) types in code snippets. It was developed by [mahdin70](https://huggingface.co/mahdin70) and trained on a balanced dataset combining BigVul and PrimeVul datasets. The model performs binary classification for vulnerability detection and multi-class classification for CWE identification. |
|
|
|
- **Model Repository**: [mahdin70/UnixCoder-Primevul-BigVul](https://huggingface.co/mahdin70/UnixCoder-Primevul-BigVul) |
|
- **Base Model**: [microsoft/unixcoder-base](https://huggingface.co/microsoft/unixcoder-base) |
|
- **Tasks**: Vulnerability Detection (Binary), CWE Classification (Multi-class) |
|
- **License**: MIT (assumed; adjust if different) |
|
- **Date**: Trained and uploaded as of March 11, 2025 |
|
|
|
## Model Architecture |
|
|
|
The model extends `unixcoder-base` with two task-specific heads: |
|
- **Vulnerability Head**: A linear layer mapping 768-dimensional hidden states to 2 classes (vulnerable or not). |
|
- **CWE Head**: A linear layer mapping 768-dimensional hidden states to 135 classes (134 CWE types + 1 for "no CWE"). |
|
|
|
The architecture is implemented as a custom `MultiTaskUnixCoder` class in PyTorch, with the loss computed as the sum of cross-entropy losses for both tasks. |
|
|
|
## Training Dataset |
|
|
|
The model was trained on the `mahdin70/balanced_merged_bigvul_primevul` dataset, which combines: |
|
- **BigVul**: A dataset of real-world vulnerabilities from open-source projects. |
|
- **PrimeVul**: A dataset focused on prime vulnerabilities in code. |
|
|
|
### Dataset Details |
|
- **Splits**: |
|
- Train: 124,780 samples |
|
- Validation: 26,740 samples |
|
- Test: 26,738 samples |
|
|
|
- **Features**: |
|
- `func`: Code snippet (text) |
|
- `vul`: Binary label (0 = non-vulnerable, 1 = vulnerable) |
|
- `CWE ID`: CWE identifier (e.g., CWE-89) or None for non-vulnerable samples |
|
|
|
- **Preprocessing**: |
|
- CWE labels were encoded using a `LabelEncoder` with 134 unique CWE classes identified across the dataset. |
|
- Non-vulnerable samples assigned a CWE label of -1 (mapped to 0 in the model). |
|
|
|
The dataset is balanced to ensure a fair representation of vulnerable and non-vulnerable samples, with a maximum of 10 samples per commit where applicable. |
|
|
|
## Training Details |
|
|
|
### Training Arguments |
|
The model was trained using the Hugging Face `Trainer` API with the following arguments: |
|
- **Output Directory**: `./unixcoder_multitask` |
|
- **Evaluation Strategy**: Per epoch |
|
- **Save Strategy**: Per epoch |
|
- **Learning Rate**: 2e-5 |
|
- **Batch Size**: 8 (per device, train and eval) |
|
- **Epochs**: 3 |
|
- **Weight Decay**: 0.01 |
|
- **Logging**: Every 10 steps, logged to `./logs` |
|
- **WANDB**: Disabled |
|
|
|
### Training Environment |
|
- **Hardware**: NVIDIA Tesla T4 GPU |
|
- **Framework**: PyTorch 2.5.1+cu121, Transformers 4.47.0 |
|
- **Duration**: ~6 hours, 34 minutes, 53 seconds (23,397 steps) |
|
|
|
### Training Metrics |
|
Validation metrics across epochs: |
|
|
|
| Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy | |
|
|-------|---------------|-----------------|--------------|---------------|------------|----------|--------------| |
|
| 1 | 0.3038 | 0.4997 | 0.9570 | 0.8082 | 0.5379 | 0.6459 | 0.1887 | |
|
| 2 | 0.6092 | 0.4859 | 0.9587 | 0.8118 | 0.5641 | 0.6657 | 0.2964 | |
|
| 3 | 0.4261 | 0.5090 | 0.9585 | 0.8114 | 0.5605 | 0.6630 | 0.3323 | |
|
|
|
- **Final Training Loss**: 0.4430 (average over all steps) |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the test split (26,738 samples) with the following metrics: |
|
- **Vulnerability Detection**: |
|
- Accuracy: 0.9571 |
|
- Precision: 0.7947 |
|
- Recall: 0.5437 |
|
- F1 Score: 0.6457 |
|
- **CWE Classification** (on vulnerable samples): |
|
- Accuracy: 0.3288 |
|
|
|
The model excels at identifying non-vulnerable code (high accuracy) but has moderate recall for vulnerabilities and lower CWE classification accuracy, indicating room for improvement in CWE prediction. |
|
|
|
## Usage |
|
|
|
### Installation |
|
Install the required libraries: |
|
```bash |
|
pip install transformers torch datasets huggingface_hub |
|
|
|
``` |
|
|
|
### Sample Code Snippet |
|
Below is an example of how to use the model for inference on a code snippet: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/unixcoder-base") |
|
model = AutoModel.from_pretrained("mahdin70/UnixCoder-Primevul-BigVul", trust_remote_code=True) |
|
model.eval() |
|
|
|
# Example code snippet |
|
code = """ |
|
bool DebuggerFunction::InitTabContents() { |
|
Value* debuggee; |
|
EXTENSION_FUNCTION_VALIDATE(args_->Get(0, &debuggee)); |
|
|
|
DictionaryValue* dict = static_cast<DictionaryValue*>(debuggee); |
|
EXTENSION_FUNCTION_VALIDATE(dict->GetInteger(keys::kTabIdKey, &tab_id_)); |
|
|
|
contents_ = NULL; |
|
TabContentsWrapper* wrapper = NULL; |
|
bool result = ExtensionTabUtil::GetTabById( |
|
tab_id_, profile(), include_incognito(), NULL, NULL, &wrapper, NULL); |
|
if (!result || !wrapper) { |
|
error_ = ExtensionErrorUtils::FormatErrorMessage( |
|
keys::kNoTabError, |
|
base::IntToString(tab_id_)); |
|
return false; |
|
} |
|
contents_ = wrapper->web_contents(); |
|
|
|
if (ChromeWebUIControllerFactory::GetInstance()->HasWebUIScheme( |
|
contents_->GetURL())) { |
|
error_ = ExtensionErrorUtils::FormatErrorMessage( |
|
keys::kAttachToWebUIError, |
|
contents_->GetURL().scheme()); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
""" |
|
|
|
# Tokenize input |
|
inputs = tokenizer(code, return_tensors="pt", padding="max_length", truncation=True, max_length=512) |
|
|
|
# Move to GPU if available |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
# Get predictions |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
vul_logits = outputs["vul_logits"] |
|
cwe_logits = outputs["cwe_logits"] |
|
|
|
# Vulnerability prediction |
|
vul_pred = torch.argmax(vul_logits, dim=1).item() |
|
print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Not Vulnerable'}") |
|
|
|
# CWE prediction (if vulnerable) |
|
if vul_pred == 1: |
|
cwe_pred = torch.argmax(cwe_logits, dim=1).item() - 1 # Subtract 1 as -1 is "no CWE" |
|
print(f"Predicted CWE: {cwe_pred if cwe_pred >= 0 else 'None'}") |
|
|
|
``` |
|
|
|
### Output Example: |
|
|
|
```bash |
|
Vulnerability: Vulnerable |
|
Predicted CWE: 120 # Maps to CWE-120 (Buffer Overflow), depending on encoder |
|
``` |
|
|
|
## Notes: |
|
|
|
The CWE prediction is an integer index (0 to 133). To map it to a specific CWE ID (e.g., CWE-120), you need the LabelEncoder used during training, available in the dataset preprocessing step. |
|
Ensure trust_remote_code=True as the model uses custom code from the repository. |
|
|
|
## Limitations |
|
- CWE Accuracy: The model struggles with precise CWE classification (32.88% accuracy), likely due to class imbalance or complexity in distinguishing similar CWE types. |
|
- Recall: Moderate recall (54.37%) for vulnerability detection suggests some vulnerable samples may be missed. |
|
- Generalization: Trained on BigVul and PrimeVul, performance may vary on out-of-domain codebases. |
|
|
|
## Future Improvements |
|
- Increase training epochs or dataset size for better CWE accuracy. |
|
- Experiment with class weighting to address CWE imbalance. |
|
- Fine-tune on additional datasets for broader generalization. |