|
from transformers import PreTrainedModel, AutoModel, PretrainedConfig |
|
import torch |
|
from torch import nn |
|
|
|
class MultiTaskUnixCoderConfig(PretrainedConfig): |
|
model_type = "multi_task_unixcoder" |
|
def __init__(self, num_cwe_classes=106, **kwargs): |
|
super().__init__(**kwargs) |
|
self.num_cwe_classes = num_cwe_classes |
|
|
|
class MultiTaskUnixCoder(PreTrainedModel): |
|
config_class = MultiTaskUnixCoderConfig |
|
base_model_prefix = "base" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.base = AutoModel.from_pretrained("microsoft/unixcoder-base") |
|
self.vul_head = nn.Linear(768, 2) |
|
self.cwe_head = nn.Linear(768, config.num_cwe_classes + 1) |
|
|
|
def forward(self, input_ids, attention_mask=None, labels_vul=None, labels_cwe=None): |
|
outputs = self.base(input_ids=input_ids, attention_mask=attention_mask) |
|
hidden_state = outputs.last_hidden_state[:, 0, :] |
|
|
|
vul_logits = self.vul_head(hidden_state) |
|
cwe_logits = self.cwe_head(hidden_state) |
|
|
|
loss = None |
|
if labels_vul is not None and labels_cwe is not None: |
|
vul_loss = nn.CrossEntropyLoss()(vul_logits, labels_vul) |
|
cwe_loss = nn.CrossEntropyLoss()(cwe_logits, labels_cwe + 1) |
|
loss = vul_loss + cwe_loss |
|
|
|
return {"loss": loss, "vul_logits": vul_logits, "cwe_logits": cwe_logits} if loss is not None else {"vul_logits": vul_logits, "cwe_logits": cwe_logits} |