mahmoudmamdouh13's picture
Update README.md
539ebfc verified
metadata
library_name: transformers
license: bsd-3-clause
base_model:
  - MIT/ast-finetuned-speech-commands-v2
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: ast-mlcommons-speech-commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.9743628199079283
          - name: Recall
            type: recall
            value: 0.9743424814179531
          - name: F1
            type: f1
            value: 0.9743165983480835

ast-mlcommons-speech-commands

This model is a fine-tuned version of MIT/ast-finetuned-speech-commands-v2 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1346
  • Precision: 0.9744
  • Recall: 0.9743
  • F1: 0.9743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0799 1.0 3496 0.1498 0.9596 0.9573 0.9577
0.0624 2.0 6992 0.1141 0.9689 0.9687 0.9685
0.0091 3.0 10488 0.1285 0.9713 0.9713 0.9711
0.0384 4.0 13984 0.1237 0.9743 0.9743 0.9742
0.0019 5.0 17480 0.1346 0.9744 0.9743 0.9743

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1