dataset_1_model / README.md
manu's picture
Update README.md
035a796 verified
|
raw
history blame
8.94 kB
metadata
license: mit
base_model: croissantllm/CroissantLLMBase
tags:
  - generated_from_trainer
model-index:
  - name: out_translation
    results: []

Usage

>>> chat_input = "<|im_start|> system\nYou are a helpful assistant.<|im_end|> \n<|im_start|> user\nTraduit ce texte en anglais : \nEn 1975, la localité comptait 90 habitants, des Guiziga et lors du recensement de 2005, on y a dénombré x habitants.<|im_end|> \n<|im_start|> assistant\n"

>>> inputs = tokenizer(chat_input, return_tensors="pt").to(model.device)

>>> tokens = model.generate(**inputs, **generation_args)
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.

>>> print(tokenizer.decode(tokens[0]))

<s><|im_start|> system
You are a helpful assistant.<|im_end|> 
<|im_start|> user
Traduit ce texte en anglais : 
En 1975, la localité comptait 90 habitants, des Guiziga et lors du recensement de 2005, on y a dénombré x habitants.<|im_end|> 
<|im_start|> assistant
When the town had 90 inhabitants in 1975, it was called Guizaga and during the census of 2005, there were x inhabitants.<|im_end|> 
</s>


>>> chat_input = "<|im_start|> system\nYou are a helpful assistant.<|im_end|> \n<|im_start|> user\nCorrige les fautes dans ce texte : \nEn 1975, la localité comptait 90 habitant, des Guiziga et lors du recensement de 2005, on y a dénombrer 56 habitants.<|im_end|> \n<|im_start|> assistant\n"

>>> inputs = tokenizer(chat_input, return_tensors="pt").to(model.device)

>>> tokens = model.generate(**inputs, **generation_args)
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.

>>> print(tokenizer.decode(tokens[0]))
<s><|im_start|> system
You are a helpful assistant.<|im_end|> 
<|im_start|> user
Corrige les fautes dans ce texte : 
En 1975, la localité comptait 90 habitant, des Guiziga et lors du recensement de 2005, on y a dénombrer 56 habitants.<|im_end|> 

<|im_start|> assistant
 En 1975, la commune comptait 90 habitants dont des Guizigas et au recensement de 2005, elle en compte 56.<|im_end|> 
</s>
>>> 

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: croissantllm/CroissantLLMBase                                                                                                                                                                   
model_type: LlamaForCausalLM                                                                                                                                                                                
tokenizer_type: LlamaTokenizerFast                                                                                                                                                                              
is_llama_derived_model: true                                                                                                                                                                                

special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

tokens:
  - "<|im_start|>"
  - "<|im_end|>"
                                                                                                                                                                                                            
load_in_8bit: false                                                                                                                                                                                         
load_in_4bit: false                                                                                                                                                                                         
strict: false                                                                                                                                                                                               
                                                                                                                                                                                                            
datasets:                                                                                                                                                                                                   
  - path: manu/dataset_1
    split: train                                                                                                                                                              
    type: sharegpt

chat_template: "chatml"
# default_system_message: "Rewrite the sentence to remove the PII."

dataset_prepared_path: last_pii  
val_set_size: 0.05                       
output_dir: ./out_translation
                                                                                                                                                                                                            
sequence_len: 2048                                                                                                                                                                                          
sample_packing: false                                                                                                                                                                                       
pad_to_sequence_len: false                                                                                                                                                                                   
                                                                                                                                                                                                            
adapter:                                                                                                                                                                                                    
lora_model_dir:                                                                                                                                                                                             
lora_r:                                                                                                                                                                                                     
lora_alpha:                                                                                                                                                                                                 
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00003

train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.05
fsdp:
fsdp_config:

out_translation

This model is a fine-tuned version of croissantllm/CroissantLLMBase on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.2927 0.0 1 0.3293
0.2151 0.25 145 0.0175
0.3389 0.5 290 0.0128
0.0917 0.75 435 0.0108

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0