SentenceTransformer based on answerdotai/ModernBERT-large
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-large on the boletin-oficial-argentina-questions dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Training was possible through the collaboration between SandboxAI and Universidad Nacional de Río Negro
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-large
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: es
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'¿Cómo se publican y notifican los Cuadros Tarifarios a los usuarios de los Accesos Norte y Oeste a la Ciudad Autónoma de Buenos Aires?',
'Que corresponde entonces, sobre la base de la utilización de dicha metodología de variación mensual tarifaria aprobar los Cuadros Tarifarios a ser aplicados a los Accesos Norte y Oeste a la Ciudad Autónoma de Buenos Aires, que permitirán contar con la calidad en la prestación del servicio a los usuarios y la calidad de las prestaciones que realizan las empresas Concesionarias. Que la GERENCIA EJECUTIVA DE PLANEAMIENTO Y CONCESIONES de esta DIRECCIÓN NACIONAL DE VIALIDAD ha tomado la intervención que le compete. Que la GERENCIA EJECUTIVA DE ASUNTOS JURÍDICOS de esta DIRECCIÓN NACIONAL DE VIALIDAD ha tomado la intervención de su competencia. Que la presente medida se dicta en ejercicio de las facultades conferidas por el Decreto Ley Nº 505/58 ratificado por la Ley Nº 14.467, la Ley Nº 17.520, la Ley Nº 23.696, la Ley Nº 27.445, la Ley 16.920 y el Decreto el N° 613 de fecha 15 de julio de 2024. Por ello, EL ADMINISTRADOR GENERAL DE LA DIRECCIÓN NACIONAL DE VIALIDAD RESUELVE: ARTÍCULO 1º.- Apruébanse los Cuadros Tarifarios a ser aplicados a los Corredores Accesos Norte y Oeste a la Ciudad Autónoma de Buenos Aires, que como Anexo N° IF-2024-109530073-APN-DNV#MEC forma parte integrante de la presente resolución. ARTÍCULO 2°.- Establécese que los Cuadros Tarifarios que se aprueban por el artículo 1º de la presente medida, tendrán vigencia a partir de darse a conocer a los usuarios a través de su publicación en formato papel o digital durante DOS (2) días corridos, en por lo menos DOS (2) de los principales medios periodísticos de la zona de influencia, de manera previa a su aplicación. ARTÍCULO 3°.- Publíquese la presente medida durante UN (1) día en el Boletín Oficial y difúndase por medio de la SUBGERENCIA DE ATENCIÓN AL USUARIO, a través de la página Web de esta DIRECCIÓN NACIONAL DE VIALIDAD.',
'El Cuerpo de Integrantes, está compuesto por las siguientes Jefaturas de departamento/servicios/áreas/unidad funcional o sus representantes (completar con la información correspondiente al establecimiento de salud), e integrantes del Departamento/Dirección/Coordinación y/o Área de Calidad Institucional (si la misma estuviera conformada en la estructura hospitalaria). Se realizará un seguimiento de la asistencia de los/las integrantes estables para quienes se solicitará un 80% de presentismo anual, descontando uso de licencias. Se deberá establecer de antemano el cuadro de reemplazos para ausencias justificadas. Integrantes o miembros adherentes o eventuales: Entre los representantes de otros servicios de apoyo se encuentran (completar con la información correspondiente al establecimiento de salud). Asimismo, el Comité se reserva el derecho de convocar a otros/as miembros adherentes de acuerdo con el orden del día. Esta institución, se basa, además, en el paradigma de la cultura de calidad y el enfoque de derechos y cuidados centrados en las personas, considera fundamental la participación de representantes de la comunidad /pacientes/residentes y/o familiares. Por dicho motivo se establecen los siguientes lineamientos que garantizan su participación (completar con la información correspondiente al establecimiento de salud). Artículo 4. Responsabilidades del Comité El comité deberá elevar a las autoridades del establecimiento un plan anual de trabajo que incorpore las acciones de mejora surgidas del diagnóstico situacional en fecha convenida.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
modernbert-bora-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4372 |
cosine_accuracy@3 | 0.6143 |
cosine_accuracy@5 | 0.6881 |
cosine_accuracy@10 | 0.7747 |
cosine_precision@1 | 0.4372 |
cosine_precision@3 | 0.2048 |
cosine_precision@5 | 0.1376 |
cosine_precision@10 | 0.0775 |
cosine_recall@1 | 0.4372 |
cosine_recall@3 | 0.6143 |
cosine_recall@5 | 0.6881 |
cosine_recall@10 | 0.7747 |
cosine_ndcg@10 | 0.5996 |
cosine_mrr@10 | 0.5443 |
cosine_map@100 | 0.5523 |
Training Details
Training Dataset
boletin-oficial-argentina-questions
- Dataset: boletin-oficial-argentina-questions at 600d501
- Size: 49,673 training samples
- Columns:
question
andcontext
- Approximate statistics based on the first 1000 samples:
question context type string string details - min: 20 tokens
- mean: 40.66 tokens
- max: 149 tokens
- min: 51 tokens
- mean: 576.28 tokens
- max: 877 tokens
- Samples:
question context ¿Qué pasos debo seguir si quiero cambiar de Director Técnico en mi laboratorio?
Conjuntamente a lo anterior, la Dirección de Evaluación de Calidad podrá convocar tanto a los Directores Técnicos como a los analistas a jornadas, talleres o cursos de capacitación y actualización que estipule como obligatorios. ARTÍCULO 13.- Toda modificación en la situación del laboratorio en cuanto a domicilio, instalaciones, Director Técnico, equipamiento o reactivos que afecten al desarrollo de ensayos, deberá comunicarse en forma fehaciente a la Dirección de Evaluación de Calidad, dentro de los TREINTA (30) días corridos de producida la modificación. La modificación no surtirá efecto hasta recibir la conformidad por parte de la Dirección de Evaluación de Calidad, es decir, el laboratorio no podrá realizar análisis ni emitir certificados hasta recibir la conformidad por parte de la Dirección de Evaluación de Calidad. Otros cambios en los datos suministrados en cualquiera de los Anexos presentados en el momento de la habilitación deberán ser informados mediante la presentación de ...
¿Qué documentos o acuerdos se han homologado en esta resolución y cómo se gestionarán estos instrumentos?
Por ello, EL SECRETARIO DE TRABAJO RESUELVE: ARTÍCULO 1°.- Declárese homologado el acuerdo y sus anexos, obrantes en el RE-2023-59947548-APN-DTD#JGM del EX-2023-45783107- -APN-DGD#MT, celebrado entre el SINDICATO OBREROS Y EMPLEADOS DE ESTACIONES DE SERVICIO Y G.N.C., GARAGES, PLAYAS DE ESTACIONAMIENTO Y LAVADEROS (SOESGYPE) y la FEDERACIÓN DE OBREROS Y EMPLEADOS DE ESTACIONES DE SERVICIO, GARAGES, PLAYAS DE ESTACIONAMIENTO, LAVADEROS Y GOMERÍAS DE LA REPÚBLICA ARGENTINA, por el sector sindical, y la CÁMARA DE GARAJES, ESTACIONAMIENTOS Y ACTIVIDADES AFINES DE LA REPÚBLICA ARGENTINA, por el sector empleador, conforme a lo dispuesto en la Ley de Negociación Colectiva N° 14.250 (t.o. 2004). ARTÍCULO 2°.- Declárese homologado el acuerdo y sus anexos, obrantes en el RE-2023-124689919-APN-DGD#MT del EX-2023-45783107- -APN-DGD#MT, celebrado entre el SINDICATO OBREROS Y EMPLEADOS DE ESTACIONES DE SERVICIO Y G.N.C., GARAGES, PLAYAS DE ESTACIONAMIENTO Y LAVADEROS (SOESGYPE) y la FEDERACIÓN D...
¿Cuál es la fecha límite para presentar proyectos bajo las Convocatorias del Programa Nacional de Desarrollo de Proveedores 2023?
Vigencia: a partir del día siguiente al de su publicación en el Boletín Oficial) ARTÍCULO 11.- Apruébanse las “Bases y Condiciones Particulares del Programa Nacional de Desarrollo de Proveedores 2023” que regirán las Convocatorias formalizadas en los Artículos 1° a 10 de la presente disposición en forma complementaria a las “Bases y Condiciones Generales del Programa Nacional de Desarrollo de Proveedores” y al “Reglamento Operativo del Programa Nacional de Desarrollo de Proveedores”, ambos aprobados por la Resolución Nº 112 de fecha 21 de julio de 2020 de la ex SECRETARÍA DE INDUSTRIA, ECONOMÍA DEL CONOCIMIENTO Y GESTIÓN COMERCIAL EXTERNA del ex MINISTERIO DE DESARROLLO PRODUCTIVO y su modificatoria, las que como Anexo, IF-2023-17933030-APN-SSI#MEC, forman parte integrante de la presente medida. ARTÍCULO 12.- Establécese que la vigencia de las Convocatorias dispuestas en los Artículos 1° a 10 de la presente medida se extiende hasta el día 20 de abril de 2023, o hasta agotarse el cupo...
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 2learning_rate
: 4e-05num_train_epochs
: 50warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | modernbert-bora-eval_cosine_ndcg@10 |
---|---|---|---|
0.0201 | 100 | 1.3848 | - |
0.0403 | 200 | 1.345 | - |
0.0604 | 300 | 1.3149 | - |
0.0805 | 400 | 1.2363 | - |
0.1007 | 500 | 1.1118 | - |
0.1208 | 600 | 0.8115 | - |
0.1409 | 700 | 0.5525 | - |
0.1611 | 800 | 0.3266 | - |
0.1812 | 900 | 0.272 | - |
0.2013 | 1000 | 0.1926 | - |
0.2215 | 1100 | 0.1615 | - |
0.2416 | 1200 | 0.1206 | - |
0.2617 | 1300 | 0.1044 | - |
0.2819 | 1400 | 0.1285 | - |
0.3020 | 1500 | 0.0704 | - |
0.3221 | 1600 | 0.0957 | - |
0.3423 | 1700 | 0.1056 | - |
0.3624 | 1800 | 0.0981 | - |
0.3825 | 1900 | 0.0836 | - |
0.4027 | 2000 | 0.0672 | - |
0.4228 | 2100 | 0.0731 | - |
0.4429 | 2200 | 0.0534 | - |
0.4631 | 2300 | 0.0568 | - |
0.4832 | 2400 | 0.057 | - |
0.5033 | 2500 | 0.0479 | - |
0.5235 | 2600 | 0.063 | - |
0.5436 | 2700 | 0.0512 | - |
0.5637 | 2800 | 0.0454 | - |
0.5839 | 2900 | 0.0346 | - |
0.6040 | 3000 | 0.0364 | - |
0.6241 | 3100 | 0.0401 | - |
0.6443 | 3200 | 0.0486 | - |
0.6644 | 3300 | 0.0549 | - |
0.6845 | 3400 | 0.0424 | - |
0.7047 | 3500 | 0.027 | - |
0.7248 | 3600 | 0.0406 | - |
0.7449 | 3700 | 0.0223 | - |
0.7650 | 3800 | 0.0377 | - |
0.7852 | 3900 | 0.026 | - |
0.8053 | 4000 | 0.0452 | - |
0.8254 | 4100 | 0.0326 | - |
0.8456 | 4200 | 0.0434 | - |
0.8657 | 4300 | 0.0529 | - |
0.8858 | 4400 | 0.0265 | - |
0.9060 | 4500 | 0.0387 | - |
0.9261 | 4600 | 0.0398 | - |
0.9462 | 4700 | 0.0376 | - |
0.9664 | 4800 | 0.0321 | - |
0.9865 | 4900 | 0.0246 | - |
1.0066 | 5000 | 0.0478 | - |
1.0268 | 5100 | 0.0384 | - |
1.0469 | 5200 | 0.0256 | - |
1.0670 | 5300 | 0.0159 | - |
1.0872 | 5400 | 0.0302 | - |
1.1073 | 5500 | 0.0359 | - |
1.1274 | 5600 | 0.0329 | - |
1.1476 | 5700 | 0.0331 | - |
1.1677 | 5800 | 0.0198 | - |
1.1878 | 5900 | 0.0352 | - |
1.2080 | 6000 | 0.0189 | - |
1.2281 | 6100 | 0.0366 | - |
1.2482 | 6200 | 0.0218 | - |
1.2684 | 6300 | 0.0389 | - |
1.2885 | 6400 | 0.0184 | - |
1.3086 | 6500 | 0.0164 | - |
1.3288 | 6600 | 0.0167 | - |
1.3489 | 6700 | 0.0417 | - |
1.3690 | 6800 | 0.0318 | - |
1.3892 | 6900 | 0.0286 | - |
1.4093 | 7000 | 0.0185 | - |
1.4294 | 7100 | 0.0267 | - |
1.4496 | 7200 | 0.0382 | - |
1.4697 | 7300 | 0.0143 | - |
1.4898 | 7400 | 0.0252 | - |
1.5100 | 7500 | 0.0186 | - |
1.5301 | 7600 | 0.0454 | - |
1.5502 | 7700 | 0.0206 | - |
1.5704 | 7800 | 0.0282 | - |
1.5905 | 7900 | 0.0349 | - |
1.6106 | 8000 | 0.0432 | - |
1.6308 | 8100 | 0.0177 | - |
1.6509 | 8200 | 0.0219 | - |
1.6710 | 8300 | 0.0342 | - |
1.6912 | 8400 | 0.024 | - |
1.7113 | 8500 | 0.0099 | - |
1.7314 | 8600 | 0.0191 | - |
1.7516 | 8700 | 0.0295 | - |
1.7717 | 8800 | 0.0277 | - |
1.7918 | 8900 | 0.0149 | - |
1.8120 | 9000 | 0.0274 | - |
1.8321 | 9100 | 0.0174 | - |
1.8522 | 9200 | 0.0298 | - |
1.8724 | 9300 | 0.0216 | - |
1.8925 | 9400 | 0.0293 | - |
1.9126 | 9500 | 0.0299 | - |
1.9328 | 9600 | 0.0413 | - |
1.9529 | 9700 | 0.0273 | - |
1.9730 | 9800 | 0.0195 | - |
1.9932 | 9900 | 0.025 | - |
2.0133 | 10000 | 0.0303 | - |
2.0334 | 10100 | 0.0209 | - |
2.0536 | 10200 | 0.0155 | - |
2.0737 | 10300 | 0.0219 | - |
2.0938 | 10400 | 0.0298 | - |
2.1140 | 10500 | 0.032 | - |
2.1341 | 10600 | 0.0206 | - |
2.1542 | 10700 | 0.0218 | - |
2.1744 | 10800 | 0.0153 | - |
2.1945 | 10900 | 0.0151 | - |
2.2146 | 11000 | 0.0196 | - |
2.2347 | 11100 | 0.0223 | - |
2.2549 | 11200 | 0.032 | - |
2.2750 | 11300 | 0.026 | - |
2.2951 | 11400 | 0.0213 | - |
2.3153 | 11500 | 0.031 | - |
2.3354 | 11600 | 0.025 | - |
2.3555 | 11700 | 0.0315 | - |
2.3757 | 11800 | 0.0239 | - |
2.3958 | 11900 | 0.03 | - |
2.4159 | 12000 | 0.015 | - |
2.4361 | 12100 | 0.0159 | - |
2.4562 | 12200 | 0.0283 | - |
2.4763 | 12300 | 0.0185 | - |
2.4965 | 12400 | 0.0141 | - |
2.5166 | 12500 | 0.0303 | - |
2.5367 | 12600 | 0.0242 | - |
2.5569 | 12700 | 0.0166 | - |
2.5770 | 12800 | 0.026 | - |
2.5971 | 12900 | 0.0148 | - |
2.6173 | 13000 | 0.0223 | - |
2.6374 | 13100 | 0.006 | - |
2.6575 | 13200 | 0.0162 | - |
2.6777 | 13300 | 0.0325 | - |
2.6978 | 13400 | 0.022 | - |
2.7179 | 13500 | 0.0182 | - |
2.7381 | 13600 | 0.0113 | - |
2.7582 | 13700 | 0.0205 | - |
2.7783 | 13800 | 0.0173 | - |
2.7985 | 13900 | 0.0165 | - |
2.8186 | 14000 | 0.0168 | - |
2.8387 | 14100 | 0.0315 | - |
2.8589 | 14200 | 0.0234 | - |
2.8790 | 14300 | 0.0241 | - |
2.8991 | 14400 | 0.0241 | - |
2.9193 | 14500 | 0.02 | - |
2.9394 | 14600 | 0.021 | - |
2.9595 | 14700 | 0.0215 | - |
2.9797 | 14800 | 0.0245 | - |
2.9998 | 14900 | 0.0247 | - |
3.0199 | 15000 | 0.0337 | - |
3.0401 | 15100 | 0.035 | - |
3.0602 | 15200 | 0.0091 | - |
3.0803 | 15300 | 0.0168 | - |
3.1005 | 15400 | 0.029 | - |
3.1206 | 15500 | 0.0195 | - |
3.1407 | 15600 | 0.0227 | - |
3.1609 | 15700 | 0.0196 | - |
3.1810 | 15800 | 0.0114 | - |
3.2011 | 15900 | 0.0295 | - |
3.2213 | 16000 | 0.0272 | - |
3.2414 | 16100 | 0.0189 | - |
3.2615 | 16200 | 0.018 | - |
3.2817 | 16300 | 0.0176 | - |
3.3018 | 16400 | 0.0125 | - |
3.3219 | 16500 | 0.0296 | - |
3.3421 | 16600 | 0.0242 | - |
3.3622 | 16700 | 0.0205 | - |
3.3823 | 16800 | 0.013 | - |
3.4025 | 16900 | 0.0297 | - |
3.4226 | 17000 | 0.027 | - |
3.4427 | 17100 | 0.0194 | - |
3.4629 | 17200 | 0.0196 | - |
3.4830 | 17300 | 0.0208 | - |
3.5031 | 17400 | 0.0125 | - |
3.5233 | 17500 | 0.0172 | - |
3.5434 | 17600 | 0.0226 | - |
3.5635 | 17700 | 0.0188 | - |
3.5837 | 17800 | 0.0292 | - |
3.6038 | 17900 | 0.0338 | - |
3.6239 | 18000 | 0.0371 | - |
3.6441 | 18100 | 0.0224 | - |
3.6642 | 18200 | 0.0155 | - |
3.6843 | 18300 | 0.0147 | - |
3.7044 | 18400 | 0.0188 | - |
3.7246 | 18500 | 0.0207 | - |
3.7447 | 18600 | 0.0196 | - |
3.7648 | 18700 | 0.0105 | - |
3.7850 | 18800 | 0.0249 | - |
3.8051 | 18900 | 0.0388 | - |
3.8252 | 19000 | 0.0342 | - |
3.8454 | 19100 | 0.023 | - |
3.8655 | 19200 | 0.0187 | - |
3.8856 | 19300 | 0.0111 | - |
3.9058 | 19400 | 0.0213 | - |
3.9259 | 19500 | 0.0177 | - |
3.9460 | 19600 | 0.0162 | - |
3.9662 | 19700 | 0.01 | - |
3.9863 | 19800 | 0.0321 | - |
4.0064 | 19900 | 0.0402 | - |
4.0266 | 20000 | 0.0344 | - |
4.0467 | 20100 | 0.0093 | - |
4.0668 | 20200 | 0.0125 | - |
4.0870 | 20300 | 0.0227 | - |
4.1071 | 20400 | 0.0135 | - |
4.1272 | 20500 | 0.0118 | - |
4.1474 | 20600 | 0.0284 | - |
4.1675 | 20700 | 0.0167 | - |
4.1876 | 20800 | 0.0304 | - |
4.2078 | 20900 | 0.0238 | - |
4.2279 | 21000 | 0.0148 | - |
4.2480 | 21100 | 0.0305 | - |
4.2682 | 21200 | 0.0266 | - |
4.2883 | 21300 | 0.0177 | - |
4.3084 | 21400 | 0.0151 | - |
4.3286 | 21500 | 0.0187 | - |
4.3487 | 21600 | 0.0289 | - |
4.3688 | 21700 | 0.0291 | - |
4.3890 | 21800 | 0.0198 | - |
4.4091 | 21900 | 0.0142 | - |
4.4292 | 22000 | 0.0224 | - |
4.4494 | 22100 | 0.0237 | - |
4.4695 | 22200 | 0.0187 | - |
4.4896 | 22300 | 0.035 | - |
4.5098 | 22400 | 0.02 | - |
4.5299 | 22500 | 0.0296 | - |
4.5500 | 22600 | 0.0348 | - |
4.5702 | 22700 | 0.0339 | - |
4.5903 | 22800 | 0.0248 | - |
4.6104 | 22900 | 0.0207 | - |
4.6306 | 23000 | 0.0327 | - |
4.6507 | 23100 | 0.0195 | - |
4.6708 | 23200 | 0.015 | - |
4.6910 | 23300 | 0.0221 | - |
4.7111 | 23400 | 0.0162 | - |
4.7312 | 23500 | 0.0149 | - |
4.7514 | 23600 | 0.0239 | - |
4.7715 | 23700 | 0.0106 | - |
4.7916 | 23800 | 0.016 | - |
4.8118 | 23900 | 0.02 | - |
4.8319 | 24000 | 0.0085 | - |
4.8520 | 24100 | 0.0332 | - |
4.8722 | 24200 | 0.0264 | - |
4.8923 | 24300 | 0.0377 | - |
4.9124 | 24400 | 0.0255 | - |
4.9326 | 24500 | 0.0367 | - |
4.9527 | 24600 | 0.02 | - |
4.9728 | 24700 | 0.0126 | - |
4.9930 | 24800 | 0.029 | - |
5.0131 | 24900 | 0.0362 | - |
5.0332 | 25000 | 0.0211 | - |
5.0534 | 25100 | 0.0181 | - |
5.0735 | 25200 | 0.0114 | - |
5.0936 | 25300 | 0.0135 | - |
5.1138 | 25400 | 0.0392 | - |
5.1339 | 25500 | 0.0274 | - |
5.1540 | 25600 | 0.019 | - |
5.1741 | 25700 | 0.0243 | - |
5.1943 | 25800 | 0.0184 | - |
5.2144 | 25900 | 0.0205 | - |
5.2345 | 26000 | 0.0249 | - |
5.2547 | 26100 | 0.027 | - |
5.2748 | 26200 | 0.0202 | - |
5.2949 | 26300 | 0.018 | - |
5.3151 | 26400 | 0.0239 | - |
5.3352 | 26500 | 0.0345 | - |
5.3553 | 26600 | 0.0297 | - |
5.3755 | 26700 | 0.012 | - |
5.3956 | 26800 | 0.0245 | - |
5.4157 | 26900 | 0.0331 | - |
5.4359 | 27000 | 0.0357 | - |
5.4560 | 27100 | 0.0209 | - |
5.4761 | 27200 | 0.0268 | - |
5.4963 | 27300 | 0.0282 | - |
5.5164 | 27400 | 0.0328 | - |
5.5365 | 27500 | 0.02 | - |
5.5567 | 27600 | 0.0298 | - |
5.5768 | 27700 | 0.0146 | - |
5.5969 | 27800 | 0.0109 | - |
5.6171 | 27900 | 0.011 | - |
5.6372 | 28000 | 0.0162 | - |
5.6573 | 28100 | 0.0052 | - |
5.6775 | 28200 | 0.0296 | - |
5.6976 | 28300 | 0.0155 | - |
5.7177 | 28400 | 0.0211 | - |
5.7379 | 28500 | 0.023 | - |
5.7580 | 28600 | 0.0187 | - |
5.7781 | 28700 | 0.0199 | - |
5.7983 | 28800 | 0.0176 | - |
5.8184 | 28900 | 0.0106 | - |
5.8385 | 29000 | 0.0165 | - |
5.8587 | 29100 | 0.0072 | - |
5.8788 | 29200 | 0.0251 | - |
5.8989 | 29300 | 0.0066 | - |
5.9191 | 29400 | 0.0199 | - |
5.9392 | 29500 | 0.0283 | - |
5.9593 | 29600 | 0.0225 | - |
5.9795 | 29700 | 0.0282 | - |
5.9996 | 29800 | 0.0179 | - |
6.0197 | 29900 | 0.0317 | - |
6.0399 | 30000 | 0.0069 | - |
6.0600 | 30100 | 0.0117 | - |
6.0801 | 30200 | 0.0221 | - |
6.1003 | 30300 | 0.0175 | - |
6.1204 | 30400 | 0.0126 | - |
6.1405 | 30500 | 0.0096 | - |
6.1607 | 30600 | 0.0153 | - |
6.1808 | 30700 | 0.0181 | - |
6.2009 | 30800 | 0.029 | - |
6.2211 | 30900 | 0.0104 | - |
6.2412 | 31000 | 0.0327 | - |
6.2613 | 31100 | 0.02 | - |
6.2815 | 31200 | 0.0202 | - |
6.3016 | 31300 | 0.0124 | - |
6.3217 | 31400 | 0.0076 | - |
6.3419 | 31500 | 0.0169 | - |
6.3620 | 31600 | 0.0103 | - |
6.3821 | 31700 | 0.0243 | - |
6.4023 | 31800 | 0.0153 | - |
6.4224 | 31900 | 0.0235 | - |
6.4425 | 32000 | 0.0195 | - |
6.4627 | 32100 | 0.0092 | - |
6.4828 | 32200 | 0.0197 | - |
6.5029 | 32300 | 0.0131 | - |
6.5231 | 32400 | 0.0131 | - |
6.5432 | 32500 | 0.013 | - |
6.5633 | 32600 | 0.0131 | - |
6.5835 | 32700 | 0.0218 | - |
6.6036 | 32800 | 0.0102 | - |
6.6237 | 32900 | 0.0063 | - |
6.6438 | 33000 | 0.0141 | - |
6.6640 | 33100 | 0.0294 | - |
6.6841 | 33200 | 0.011 | - |
6.7042 | 33300 | 0.026 | - |
6.7244 | 33400 | 0.0109 | - |
6.7445 | 33500 | 0.0136 | - |
6.7646 | 33600 | 0.0203 | - |
6.7848 | 33700 | 0.0135 | - |
6.8049 | 33800 | 0.014 | - |
6.8250 | 33900 | 0.0116 | - |
6.8452 | 34000 | 0.0108 | - |
6.8653 | 34100 | 0.0112 | - |
6.8854 | 34200 | 0.0088 | - |
6.9056 | 34300 | 0.0054 | - |
6.9257 | 34400 | 0.0177 | - |
6.9458 | 34500 | 0.0103 | - |
6.9660 | 34600 | 0.0105 | - |
6.9861 | 34700 | 0.0112 | - |
7.0062 | 34800 | 0.0188 | - |
7.0264 | 34900 | 0.0232 | - |
7.0465 | 35000 | 0.017 | - |
7.0666 | 35100 | 0.0097 | - |
7.0868 | 35200 | 0.0111 | - |
7.1069 | 35300 | 0.0142 | - |
7.1270 | 35400 | 0.0275 | - |
7.1472 | 35500 | 0.0157 | - |
7.1673 | 35600 | 0.0287 | - |
7.1874 | 35700 | 0.0196 | - |
7.2076 | 35800 | 0.0081 | - |
7.2277 | 35900 | 0.0165 | - |
7.2478 | 36000 | 0.0185 | - |
7.2680 | 36100 | 0.0113 | - |
7.2881 | 36200 | 0.0212 | - |
7.3082 | 36300 | 0.0238 | - |
7.3284 | 36400 | 0.0189 | - |
7.3485 | 36500 | 0.01 | - |
7.3686 | 36600 | 0.017 | - |
7.3888 | 36700 | 0.0292 | - |
7.4089 | 36800 | 0.018 | - |
7.4290 | 36900 | 0.0203 | - |
7.4492 | 37000 | 0.0161 | - |
7.4693 | 37100 | 0.01 | - |
7.4894 | 37200 | 0.0035 | - |
7.5096 | 37300 | 0.0105 | - |
7.5297 | 37400 | 0.0111 | - |
7.5498 | 37500 | 0.0242 | - |
7.5700 | 37600 | 0.0143 | - |
7.5901 | 37700 | 0.0222 | - |
7.6102 | 37800 | 0.0132 | - |
7.6304 | 37900 | 0.0213 | - |
7.6505 | 38000 | 0.0074 | - |
7.6706 | 38100 | 0.0316 | - |
7.6908 | 38200 | 0.0287 | - |
7.7109 | 38300 | 0.014 | - |
7.7310 | 38400 | 0.0214 | - |
7.7512 | 38500 | 0.0086 | - |
7.7713 | 38600 | 0.0132 | - |
7.7914 | 38700 | 0.0069 | - |
7.8116 | 38800 | 0.0188 | - |
7.8317 | 38900 | 0.0079 | - |
7.8518 | 39000 | 0.0201 | - |
7.8720 | 39100 | 0.0122 | - |
7.8921 | 39200 | 0.0161 | - |
7.9122 | 39300 | 0.0187 | - |
7.9324 | 39400 | 0.019 | - |
7.9525 | 39500 | 0.0255 | - |
7.9726 | 39600 | 0.0108 | - |
7.9928 | 39700 | 0.0127 | - |
8.0129 | 39800 | 0.0215 | - |
8.0330 | 39900 | 0.0119 | - |
8.0532 | 40000 | 0.0106 | - |
8.0733 | 40100 | 0.0121 | - |
8.0934 | 40200 | 0.0187 | - |
8.1135 | 40300 | 0.0057 | - |
8.1337 | 40400 | 0.0164 | - |
8.1538 | 40500 | 0.0099 | - |
8.1739 | 40600 | 0.0146 | - |
8.1941 | 40700 | 0.0079 | - |
8.2142 | 40800 | 0.0053 | - |
8.2343 | 40900 | 0.0061 | - |
8.2545 | 41000 | 0.0106 | - |
8.2746 | 41100 | 0.0097 | - |
8.2947 | 41200 | 0.0074 | - |
8.3149 | 41300 | 0.0176 | - |
8.3350 | 41400 | 0.0139 | - |
8.3551 | 41500 | 0.0162 | - |
8.3753 | 41600 | 0.017 | - |
8.3954 | 41700 | 0.0216 | - |
8.4155 | 41800 | 0.0108 | - |
8.4357 | 41900 | 0.0071 | - |
8.4558 | 42000 | 0.0198 | - |
8.4759 | 42100 | 0.0054 | - |
8.4961 | 42200 | 0.0175 | - |
8.5162 | 42300 | 0.026 | - |
8.5363 | 42400 | 0.0192 | - |
8.5565 | 42500 | 0.023 | - |
8.5766 | 42600 | 0.0225 | - |
8.5967 | 42700 | 0.0143 | - |
8.6169 | 42800 | 0.0279 | - |
8.6370 | 42900 | 0.0107 | - |
8.6571 | 43000 | 0.0262 | - |
8.6773 | 43100 | 0.0052 | - |
8.6974 | 43200 | 0.0101 | - |
8.7175 | 43300 | 0.0188 | - |
8.7377 | 43400 | 0.0058 | - |
8.7578 | 43500 | 0.0202 | - |
8.7779 | 43600 | 0.0122 | - |
8.7981 | 43700 | 0.0169 | - |
8.8182 | 43800 | 0.0125 | - |
8.8383 | 43900 | 0.0142 | - |
8.8585 | 44000 | 0.0093 | - |
8.8786 | 44100 | 0.0093 | - |
8.8987 | 44200 | 0.0118 | - |
8.9189 | 44300 | 0.0055 | - |
8.9390 | 44400 | 0.027 | - |
8.9591 | 44500 | 0.0105 | - |
8.9793 | 44600 | 0.0154 | - |
8.9994 | 44700 | 0.0177 | - |
9.0195 | 44800 | 0.0145 | - |
9.0397 | 44900 | 0.0119 | - |
9.0598 | 45000 | 0.0162 | - |
9.0799 | 45100 | 0.0161 | - |
9.1001 | 45200 | 0.0083 | - |
9.1202 | 45300 | 0.0038 | - |
9.1403 | 45400 | 0.0193 | - |
9.1605 | 45500 | 0.0115 | - |
9.1806 | 45600 | 0.0102 | - |
9.2007 | 45700 | 0.0134 | - |
9.2209 | 45800 | 0.0199 | - |
9.2410 | 45900 | 0.0214 | - |
9.2611 | 46000 | 0.0096 | - |
9.2813 | 46100 | 0.0184 | - |
9.3014 | 46200 | 0.0141 | - |
9.3215 | 46300 | 0.0135 | - |
9.3417 | 46400 | 0.0242 | - |
9.3618 | 46500 | 0.0104 | - |
9.3819 | 46600 | 0.0168 | - |
9.4021 | 46700 | 0.0113 | - |
9.4222 | 46800 | 0.0287 | - |
9.4423 | 46900 | 0.0066 | - |
9.4625 | 47000 | 0.006 | - |
9.4826 | 47100 | 0.0103 | - |
9.5027 | 47200 | 0.0097 | - |
9.5229 | 47300 | 0.01 | - |
9.5430 | 47400 | 0.0177 | - |
9.5631 | 47500 | 0.0069 | - |
9.5832 | 47600 | 0.0132 | - |
9.6034 | 47700 | 0.0148 | - |
9.6235 | 47800 | 0.0071 | - |
9.6436 | 47900 | 0.0086 | - |
9.6638 | 48000 | 0.0176 | - |
9.6839 | 48100 | 0.0044 | - |
9.7040 | 48200 | 0.0165 | - |
9.7242 | 48300 | 0.0169 | - |
9.7443 | 48400 | 0.0164 | - |
9.7644 | 48500 | 0.0133 | - |
9.7846 | 48600 | 0.0096 | - |
9.8047 | 48700 | 0.0135 | - |
9.8248 | 48800 | 0.013 | - |
9.8450 | 48900 | 0.0086 | - |
9.8651 | 49000 | 0.0093 | - |
9.8852 | 49100 | 0.0042 | - |
9.9054 | 49200 | 0.0101 | - |
9.9255 | 49300 | 0.0085 | - |
9.9456 | 49400 | 0.007 | - |
9.9658 | 49500 | 0.0247 | - |
9.9859 | 49600 | 0.0129 | - |
10.0060 | 49700 | 0.0114 | - |
10.0262 | 49800 | 0.006 | - |
10.0463 | 49900 | 0.0096 | - |
10.0664 | 50000 | 0.0127 | - |
10.0866 | 50100 | 0.0136 | - |
10.1067 | 50200 | 0.0065 | - |
10.1268 | 50300 | 0.0127 | - |
10.1470 | 50400 | 0.0117 | - |
10.1671 | 50500 | 0.0156 | - |
10.1872 | 50600 | 0.0135 | - |
10.2074 | 50700 | 0.0131 | - |
10.2275 | 50800 | 0.0083 | - |
10.2476 | 50900 | 0.0082 | - |
10.2678 | 51000 | 0.0107 | - |
10.2879 | 51100 | 0.0166 | - |
10.3080 | 51200 | 0.0085 | - |
10.3282 | 51300 | 0.0132 | - |
10.3483 | 51400 | 0.013 | - |
10.3684 | 51500 | 0.0241 | - |
10.3886 | 51600 | 0.0232 | - |
10.4087 | 51700 | 0.0159 | - |
10.4288 | 51800 | 0.0049 | - |
10.4490 | 51900 | 0.0094 | - |
10.4691 | 52000 | 0.0163 | - |
10.4892 | 52100 | 0.011 | - |
10.5094 | 52200 | 0.0065 | - |
10.5295 | 52300 | 0.0112 | - |
10.5496 | 52400 | 0.0169 | - |
10.5698 | 52500 | 0.0179 | - |
10.5899 | 52600 | 0.0127 | - |
10.6100 | 52700 | 0.0138 | - |
10.6302 | 52800 | 0.0147 | - |
10.6503 | 52900 | 0.0107 | - |
10.6704 | 53000 | 0.0108 | - |
10.6906 | 53100 | 0.0118 | - |
10.7107 | 53200 | 0.021 | - |
10.7308 | 53300 | 0.0119 | - |
10.7510 | 53400 | 0.0093 | - |
10.7711 | 53500 | 0.0142 | - |
10.7912 | 53600 | 0.0087 | - |
10.8114 | 53700 | 0.0072 | - |
10.8315 | 53800 | 0.0256 | - |
10.8516 | 53900 | 0.0161 | - |
10.8718 | 54000 | 0.013 | - |
10.8919 | 54100 | 0.0157 | - |
10.9120 | 54200 | 0.0077 | - |
10.9322 | 54300 | 0.0173 | - |
10.9523 | 54400 | 0.0197 | - |
10.9724 | 54500 | 0.0087 | - |
10.9926 | 54600 | 0.0151 | - |
11.0127 | 54700 | 0.0175 | - |
11.0328 | 54800 | 0.0179 | - |
11.0529 | 54900 | 0.0152 | - |
11.0731 | 55000 | 0.0084 | - |
11.0932 | 55100 | 0.0068 | - |
11.1133 | 55200 | 0.0134 | - |
11.1335 | 55300 | 0.0146 | - |
11.1536 | 55400 | 0.0187 | - |
11.1737 | 55500 | 0.0044 | - |
11.1939 | 55600 | 0.0123 | - |
11.2140 | 55700 | 0.0255 | - |
11.2341 | 55800 | 0.0096 | - |
11.2543 | 55900 | 0.009 | - |
11.2744 | 56000 | 0.0173 | - |
11.2945 | 56100 | 0.0141 | - |
11.3147 | 56200 | 0.0093 | - |
11.3348 | 56300 | 0.0052 | - |
11.3549 | 56400 | 0.0122 | - |
11.3751 | 56500 | 0.0113 | - |
11.3952 | 56600 | 0.0086 | - |
11.4153 | 56700 | 0.0143 | - |
11.4355 | 56800 | 0.0085 | - |
11.4556 | 56900 | 0.0088 | - |
11.4757 | 57000 | 0.0135 | - |
11.4959 | 57100 | 0.0087 | - |
11.5160 | 57200 | 0.012 | - |
11.5361 | 57300 | 0.0223 | - |
11.5563 | 57400 | 0.0111 | - |
11.5764 | 57500 | 0.0244 | - |
11.5965 | 57600 | 0.0056 | - |
11.6167 | 57700 | 0.0046 | - |
11.6368 | 57800 | 0.0054 | - |
11.6569 | 57900 | 0.0134 | - |
11.6771 | 58000 | 0.0124 | - |
11.6972 | 58100 | 0.0079 | - |
11.7173 | 58200 | 0.014 | - |
11.7375 | 58300 | 0.0059 | - |
11.7576 | 58400 | 0.021 | - |
11.7777 | 58500 | 0.0096 | - |
11.7979 | 58600 | 0.0098 | - |
11.8180 | 58700 | 0.0085 | - |
11.8381 | 58800 | 0.0131 | - |
11.8583 | 58900 | 0.0122 | - |
11.8784 | 59000 | 0.0172 | - |
11.8985 | 59100 | 0.0141 | - |
11.9187 | 59200 | 0.0123 | - |
11.9388 | 59300 | 0.0318 | - |
11.9589 | 59400 | 0.007 | - |
11.9791 | 59500 | 0.0059 | - |
11.9992 | 59600 | 0.0061 | - |
12.0193 | 59700 | 0.0114 | - |
12.0395 | 59800 | 0.0049 | - |
12.0596 | 59900 | 0.0172 | - |
12.0797 | 60000 | 0.0107 | 0.5545 |
12.0999 | 60100 | 0.0094 | - |
12.1200 | 60200 | 0.0107 | - |
12.1401 | 60300 | 0.0065 | - |
12.1603 | 60400 | 0.0087 | - |
12.1804 | 60500 | 0.0275 | - |
12.2005 | 60600 | 0.009 | - |
12.2207 | 60700 | 0.0128 | - |
12.2408 | 60800 | 0.0108 | - |
12.2609 | 60900 | 0.0077 | - |
12.2811 | 61000 | 0.0088 | - |
12.3012 | 61100 | 0.0057 | - |
12.3213 | 61200 | 0.0068 | - |
12.3415 | 61300 | 0.0144 | - |
12.3616 | 61400 | 0.0137 | - |
12.3817 | 61500 | 0.0179 | - |
12.4019 | 61600 | 0.0094 | - |
12.4220 | 61700 | 0.0114 | - |
12.4421 | 61800 | 0.0025 | - |
12.4623 | 61900 | 0.0081 | - |
12.4824 | 62000 | 0.0081 | - |
12.5025 | 62100 | 0.0107 | - |
12.5226 | 62200 | 0.0119 | - |
12.5428 | 62300 | 0.009 | - |
12.5629 | 62400 | 0.0064 | - |
12.5830 | 62500 | 0.0111 | - |
12.6032 | 62600 | 0.0098 | - |
12.6233 | 62700 | 0.0147 | - |
12.6434 | 62800 | 0.0175 | - |
12.6636 | 62900 | 0.0205 | - |
12.6837 | 63000 | 0.0144 | - |
12.7038 | 63100 | 0.0191 | - |
12.7240 | 63200 | 0.008 | - |
12.7441 | 63300 | 0.0185 | - |
12.7642 | 63400 | 0.0147 | - |
12.7844 | 63500 | 0.0337 | - |
12.8045 | 63600 | 0.0117 | - |
12.8246 | 63700 | 0.0074 | - |
12.8448 | 63800 | 0.0063 | - |
12.8649 | 63900 | 0.0081 | - |
12.8850 | 64000 | 0.0091 | - |
12.9052 | 64100 | 0.0093 | - |
12.9253 | 64200 | 0.0093 | - |
12.9454 | 64300 | 0.0142 | - |
12.9656 | 64400 | 0.0113 | - |
12.9857 | 64500 | 0.0168 | - |
13.0058 | 64600 | 0.0109 | - |
13.0260 | 64700 | 0.0108 | - |
13.0461 | 64800 | 0.0084 | - |
13.0662 | 64900 | 0.0127 | - |
13.0864 | 65000 | 0.0106 | - |
13.1065 | 65100 | 0.0051 | - |
13.1266 | 65200 | 0.0188 | - |
13.1468 | 65300 | 0.015 | - |
13.1669 | 65400 | 0.0118 | - |
13.1870 | 65500 | 0.0062 | - |
13.2072 | 65600 | 0.0022 | - |
13.2273 | 65700 | 0.0119 | - |
13.2474 | 65800 | 0.005 | - |
13.2676 | 65900 | 0.0105 | - |
13.2877 | 66000 | 0.015 | - |
13.3078 | 66100 | 0.0087 | - |
13.3280 | 66200 | 0.0289 | - |
13.3481 | 66300 | 0.0101 | - |
13.3682 | 66400 | 0.0068 | - |
13.3884 | 66500 | 0.0121 | - |
13.4085 | 66600 | 0.0062 | - |
13.4286 | 66700 | 0.0123 | - |
13.4488 | 66800 | 0.0168 | - |
13.4689 | 66900 | 0.014 | - |
13.4890 | 67000 | 0.0149 | - |
13.5092 | 67100 | 0.0081 | - |
13.5293 | 67200 | 0.0051 | - |
13.5494 | 67300 | 0.0167 | - |
13.5696 | 67400 | 0.0068 | - |
13.5897 | 67500 | 0.0132 | - |
13.6098 | 67600 | 0.0056 | - |
13.6300 | 67700 | 0.0125 | - |
13.6501 | 67800 | 0.0036 | - |
13.6702 | 67900 | 0.0115 | - |
13.6904 | 68000 | 0.0154 | - |
13.7105 | 68100 | 0.0104 | - |
13.7306 | 68200 | 0.0104 | - |
13.7508 | 68300 | 0.0137 | - |
13.7709 | 68400 | 0.0047 | - |
13.7910 | 68500 | 0.0145 | - |
13.8112 | 68600 | 0.0211 | - |
13.8313 | 68700 | 0.0097 | - |
13.8514 | 68800 | 0.0171 | - |
13.8716 | 68900 | 0.0088 | - |
13.8917 | 69000 | 0.0107 | - |
13.9118 | 69100 | 0.0117 | - |
13.9320 | 69200 | 0.0156 | - |
13.9521 | 69300 | 0.0147 | - |
13.9722 | 69400 | 0.01 | - |
13.9923 | 69500 | 0.0051 | - |
14.0125 | 69600 | 0.0088 | - |
14.0326 | 69700 | 0.0091 | - |
14.0527 | 69800 | 0.0139 | - |
14.0729 | 69900 | 0.0134 | - |
14.0930 | 70000 | 0.0206 | - |
14.1131 | 70100 | 0.0089 | - |
14.1333 | 70200 | 0.0078 | - |
14.1534 | 70300 | 0.0083 | - |
14.1735 | 70400 | 0.0179 | - |
14.1937 | 70500 | 0.0129 | - |
14.2138 | 70600 | 0.0142 | - |
14.2339 | 70700 | 0.0097 | - |
14.2541 | 70800 | 0.0107 | - |
14.2742 | 70900 | 0.0087 | - |
14.2943 | 71000 | 0.0057 | - |
14.3145 | 71100 | 0.0117 | - |
14.3346 | 71200 | 0.0097 | - |
14.3547 | 71300 | 0.0092 | - |
14.3749 | 71400 | 0.0193 | - |
14.3950 | 71500 | 0.0058 | - |
14.4151 | 71600 | 0.0072 | - |
14.4353 | 71700 | 0.0027 | - |
14.4554 | 71800 | 0.0272 | - |
14.4755 | 71900 | 0.0109 | - |
14.4957 | 72000 | 0.0166 | - |
14.5158 | 72100 | 0.0132 | - |
14.5359 | 72200 | 0.0206 | - |
14.5561 | 72300 | 0.0096 | - |
14.5762 | 72400 | 0.0093 | - |
14.5963 | 72500 | 0.0126 | - |
14.6165 | 72600 | 0.0109 | - |
14.6366 | 72700 | 0.0057 | - |
14.6567 | 72800 | 0.0122 | - |
14.6769 | 72900 | 0.0046 | - |
14.6970 | 73000 | 0.0118 | - |
14.7171 | 73100 | 0.0067 | - |
14.7373 | 73200 | 0.009 | - |
14.7574 | 73300 | 0.0064 | - |
14.7775 | 73400 | 0.0098 | - |
14.7977 | 73500 | 0.0036 | - |
14.8178 | 73600 | 0.0084 | - |
14.8379 | 73700 | 0.0029 | - |
14.8581 | 73800 | 0.0078 | - |
14.8782 | 73900 | 0.0101 | - |
14.8983 | 74000 | 0.0107 | - |
14.9185 | 74100 | 0.0221 | - |
14.9386 | 74200 | 0.003 | - |
14.9587 | 74300 | 0.0102 | - |
14.9789 | 74400 | 0.0054 | - |
14.9990 | 74500 | 0.01 | - |
15.0191 | 74600 | 0.0072 | - |
15.0393 | 74700 | 0.0071 | - |
15.0594 | 74800 | 0.0038 | - |
15.0795 | 74900 | 0.0139 | - |
15.0997 | 75000 | 0.0046 | - |
15.1198 | 75100 | 0.0121 | - |
15.1399 | 75200 | 0.0101 | - |
15.1601 | 75300 | 0.0064 | - |
15.1802 | 75400 | 0.0072 | - |
15.2003 | 75500 | 0.0012 | - |
15.2205 | 75600 | 0.0137 | - |
15.2406 | 75700 | 0.0164 | - |
15.2607 | 75800 | 0.0074 | - |
15.2809 | 75900 | 0.012 | - |
15.3010 | 76000 | 0.015 | - |
15.3211 | 76100 | 0.0114 | - |
15.3413 | 76200 | 0.0056 | - |
15.3614 | 76300 | 0.0043 | - |
15.3815 | 76400 | 0.0052 | - |
15.4017 | 76500 | 0.0176 | - |
15.4218 | 76600 | 0.0143 | - |
15.4419 | 76700 | 0.0097 | - |
15.4620 | 76800 | 0.0025 | - |
15.4822 | 76900 | 0.0069 | - |
15.5023 | 77000 | 0.0061 | - |
15.5224 | 77100 | 0.0113 | - |
15.5426 | 77200 | 0.0026 | - |
15.5627 | 77300 | 0.0074 | - |
15.5828 | 77400 | 0.0069 | - |
15.6030 | 77500 | 0.0104 | - |
15.6231 | 77600 | 0.003 | - |
15.6432 | 77700 | 0.0132 | - |
15.6634 | 77800 | 0.0129 | - |
15.6835 | 77900 | 0.0197 | - |
15.7036 | 78000 | 0.0059 | - |
15.7238 | 78100 | 0.0075 | - |
15.7439 | 78200 | 0.0115 | - |
15.7640 | 78300 | 0.0087 | - |
15.7842 | 78400 | 0.0082 | - |
15.8043 | 78500 | 0.0019 | - |
15.8244 | 78600 | 0.0154 | - |
15.8446 | 78700 | 0.0121 | - |
15.8647 | 78800 | 0.0077 | - |
15.8848 | 78900 | 0.0121 | - |
15.9050 | 79000 | 0.0082 | - |
15.9251 | 79100 | 0.0086 | - |
15.9452 | 79200 | 0.0147 | - |
15.9654 | 79300 | 0.0171 | - |
15.9855 | 79400 | 0.0106 | - |
16.0056 | 79500 | 0.0083 | - |
16.0258 | 79600 | 0.0138 | - |
16.0459 | 79700 | 0.0064 | - |
16.0660 | 79800 | 0.0209 | - |
16.0862 | 79900 | 0.0109 | - |
16.1063 | 80000 | 0.0097 | - |
16.1264 | 80100 | 0.0154 | - |
16.1466 | 80200 | 0.0056 | - |
16.1667 | 80300 | 0.0083 | - |
16.1868 | 80400 | 0.0087 | - |
16.2070 | 80500 | 0.0113 | - |
16.2271 | 80600 | 0.0134 | - |
16.2472 | 80700 | 0.0181 | - |
16.2674 | 80800 | 0.0041 | - |
16.2875 | 80900 | 0.0113 | - |
16.3076 | 81000 | 0.0046 | - |
16.3278 | 81100 | 0.0039 | - |
16.3479 | 81200 | 0.0134 | - |
16.3680 | 81300 | 0.0077 | - |
16.3882 | 81400 | 0.0144 | - |
16.4083 | 81500 | 0.0268 | - |
16.4284 | 81600 | 0.0129 | - |
16.4486 | 81700 | 0.0043 | - |
16.4687 | 81800 | 0.0161 | - |
16.4888 | 81900 | 0.0128 | - |
16.5090 | 82000 | 0.0035 | - |
16.5291 | 82100 | 0.006 | - |
16.5492 | 82200 | 0.0087 | - |
16.5694 | 82300 | 0.008 | - |
16.5895 | 82400 | 0.0051 | - |
16.6096 | 82500 | 0.0015 | - |
16.6298 | 82600 | 0.0045 | - |
16.6499 | 82700 | 0.005 | - |
16.6700 | 82800 | 0.004 | - |
16.6902 | 82900 | 0.0223 | - |
16.7103 | 83000 | 0.0064 | - |
16.7304 | 83100 | 0.0112 | - |
16.7506 | 83200 | 0.011 | - |
16.7707 | 83300 | 0.013 | - |
16.7908 | 83400 | 0.0056 | - |
16.8110 | 83500 | 0.0135 | - |
16.8311 | 83600 | 0.0119 | - |
16.8512 | 83700 | 0.0116 | - |
16.8714 | 83800 | 0.0159 | - |
16.8915 | 83900 | 0.0143 | - |
16.9116 | 84000 | 0.0089 | - |
16.9317 | 84100 | 0.0105 | - |
16.9519 | 84200 | 0.0093 | - |
16.9720 | 84300 | 0.0073 | - |
16.9921 | 84400 | 0.0136 | - |
17.0123 | 84500 | 0.0043 | - |
17.0324 | 84600 | 0.0094 | - |
17.0525 | 84700 | 0.0096 | - |
17.0727 | 84800 | 0.0113 | - |
17.0928 | 84900 | 0.0089 | - |
17.1129 | 85000 | 0.0042 | - |
17.1331 | 85100 | 0.0089 | - |
17.1532 | 85200 | 0.0218 | - |
17.1733 | 85300 | 0.0063 | - |
17.1935 | 85400 | 0.0043 | - |
17.2136 | 85500 | 0.0069 | - |
17.2337 | 85600 | 0.0117 | - |
17.2539 | 85700 | 0.009 | - |
17.2740 | 85800 | 0.0106 | - |
17.2941 | 85900 | 0.0049 | - |
17.3143 | 86000 | 0.0085 | - |
17.3344 | 86100 | 0.0051 | - |
17.3545 | 86200 | 0.014 | - |
17.3747 | 86300 | 0.012 | - |
17.3948 | 86400 | 0.0027 | - |
17.4149 | 86500 | 0.0073 | - |
17.4351 | 86600 | 0.0084 | - |
17.4552 | 86700 | 0.0051 | - |
17.4753 | 86800 | 0.0175 | - |
17.4955 | 86900 | 0.0038 | - |
17.5156 | 87000 | 0.0097 | - |
17.5357 | 87100 | 0.0141 | - |
17.5559 | 87200 | 0.0071 | - |
17.5760 | 87300 | 0.0041 | - |
17.5961 | 87400 | 0.0064 | - |
17.6163 | 87500 | 0.0044 | - |
17.6364 | 87600 | 0.0108 | - |
17.6565 | 87700 | 0.0088 | - |
17.6767 | 87800 | 0.0065 | - |
17.6968 | 87900 | 0.008 | - |
17.7169 | 88000 | 0.0047 | - |
17.7371 | 88100 | 0.0151 | - |
17.7572 | 88200 | 0.0121 | - |
17.7773 | 88300 | 0.0122 | - |
17.7975 | 88400 | 0.0074 | - |
17.8176 | 88500 | 0.0192 | - |
17.8377 | 88600 | 0.0072 | - |
17.8579 | 88700 | 0.0066 | - |
17.8780 | 88800 | 0.0093 | - |
17.8981 | 88900 | 0.0089 | - |
17.9183 | 89000 | 0.0083 | - |
17.9384 | 89100 | 0.0132 | - |
17.9585 | 89200 | 0.0102 | - |
17.9787 | 89300 | 0.0082 | - |
17.9988 | 89400 | 0.0069 | - |
18.0189 | 89500 | 0.0188 | - |
18.0391 | 89600 | 0.0125 | - |
18.0592 | 89700 | 0.0015 | - |
18.0793 | 89800 | 0.0035 | - |
18.0995 | 89900 | 0.0144 | - |
18.1196 | 90000 | 0.0054 | - |
18.1397 | 90100 | 0.0104 | - |
18.1599 | 90200 | 0.0111 | - |
18.1800 | 90300 | 0.011 | - |
18.2001 | 90400 | 0.0117 | - |
18.2203 | 90500 | 0.0041 | - |
18.2404 | 90600 | 0.0184 | - |
18.2605 | 90700 | 0.0048 | - |
18.2807 | 90800 | 0.0133 | - |
18.3008 | 90900 | 0.0048 | - |
18.3209 | 91000 | 0.0057 | - |
18.3411 | 91100 | 0.0076 | - |
18.3612 | 91200 | 0.006 | - |
18.3813 | 91300 | 0.003 | - |
18.4014 | 91400 | 0.0047 | - |
18.4216 | 91500 | 0.0114 | - |
18.4417 | 91600 | 0.0244 | - |
18.4618 | 91700 | 0.0092 | - |
18.4820 | 91800 | 0.0034 | - |
18.5021 | 91900 | 0.0144 | - |
18.5222 | 92000 | 0.009 | - |
18.5424 | 92100 | 0.009 | - |
18.5625 | 92200 | 0.0086 | - |
18.5826 | 92300 | 0.007 | - |
18.6028 | 92400 | 0.0115 | - |
18.6229 | 92500 | 0.007 | - |
18.6430 | 92600 | 0.0071 | - |
18.6632 | 92700 | 0.0096 | - |
18.6833 | 92800 | 0.0051 | - |
18.7034 | 92900 | 0.0104 | - |
18.7236 | 93000 | 0.0062 | - |
18.7437 | 93100 | 0.0093 | - |
18.7638 | 93200 | 0.0081 | - |
18.7840 | 93300 | 0.003 | - |
18.8041 | 93400 | 0.0123 | - |
18.8242 | 93500 | 0.0062 | - |
18.8444 | 93600 | 0.0085 | - |
18.8645 | 93700 | 0.0115 | - |
18.8846 | 93800 | 0.0127 | - |
18.9048 | 93900 | 0.0103 | - |
18.9249 | 94000 | 0.0135 | - |
18.9450 | 94100 | 0.0101 | - |
18.9652 | 94200 | 0.0061 | - |
18.9853 | 94300 | 0.0118 | - |
19.0054 | 94400 | 0.0117 | - |
19.0256 | 94500 | 0.0092 | - |
19.0457 | 94600 | 0.0044 | - |
19.0658 | 94700 | 0.0045 | - |
19.0860 | 94800 | 0.0145 | - |
19.1061 | 94900 | 0.0038 | - |
19.1262 | 95000 | 0.0104 | - |
19.1464 | 95100 | 0.0028 | - |
19.1665 | 95200 | 0.0063 | - |
19.1866 | 95300 | 0.0124 | - |
19.2068 | 95400 | 0.0035 | - |
19.2269 | 95500 | 0.0103 | - |
19.2470 | 95600 | 0.0079 | - |
19.2672 | 95700 | 0.0026 | - |
19.2873 | 95800 | 0.0077 | - |
19.3074 | 95900 | 0.0108 | - |
19.3276 | 96000 | 0.0021 | - |
19.3477 | 96100 | 0.0057 | - |
19.3678 | 96200 | 0.0052 | - |
19.3880 | 96300 | 0.0042 | - |
19.4081 | 96400 | 0.0063 | - |
19.4282 | 96500 | 0.0079 | - |
19.4484 | 96600 | 0.0029 | - |
19.4685 | 96700 | 0.0066 | - |
19.4886 | 96800 | 0.006 | - |
19.5088 | 96900 | 0.0078 | - |
19.5289 | 97000 | 0.0139 | - |
19.5490 | 97100 | 0.011 | - |
19.5692 | 97200 | 0.0084 | - |
19.5893 | 97300 | 0.0116 | - |
19.6094 | 97400 | 0.0078 | - |
19.6296 | 97500 | 0.0087 | - |
19.6497 | 97600 | 0.0037 | - |
19.6698 | 97700 | 0.0077 | - |
19.6900 | 97800 | 0.0077 | - |
19.7101 | 97900 | 0.0093 | - |
19.7302 | 98000 | 0.0126 | - |
19.7504 | 98100 | 0.0092 | - |
19.7705 | 98200 | 0.0067 | - |
19.7906 | 98300 | 0.0137 | - |
19.8108 | 98400 | 0.0066 | - |
19.8309 | 98500 | 0.0076 | - |
19.8510 | 98600 | 0.0055 | - |
19.8711 | 98700 | 0.0075 | - |
19.8913 | 98800 | 0.0036 | - |
19.9114 | 98900 | 0.0118 | - |
19.9315 | 99000 | 0.0101 | - |
19.9517 | 99100 | 0.009 | - |
19.9718 | 99200 | 0.0042 | - |
19.9919 | 99300 | 0.0164 | - |
20.0121 | 99400 | 0.0115 | - |
20.0322 | 99500 | 0.0091 | - |
20.0523 | 99600 | 0.011 | - |
20.0725 | 99700 | 0.0035 | - |
20.0926 | 99800 | 0.0041 | - |
20.1127 | 99900 | 0.0065 | - |
20.1329 | 100000 | 0.0151 | - |
20.1530 | 100100 | 0.0033 | - |
20.1731 | 100200 | 0.008 | - |
20.1933 | 100300 | 0.0118 | - |
20.2134 | 100400 | 0.0084 | - |
20.2335 | 100500 | 0.0179 | - |
20.2537 | 100600 | 0.0073 | - |
20.2738 | 100700 | 0.0034 | - |
20.2939 | 100800 | 0.0133 | - |
20.3141 | 100900 | 0.0036 | - |
20.3342 | 101000 | 0.0091 | - |
20.3543 | 101100 | 0.004 | - |
20.3745 | 101200 | 0.0037 | - |
20.3946 | 101300 | 0.0064 | - |
20.4147 | 101400 | 0.0112 | - |
20.4349 | 101500 | 0.0097 | - |
20.4550 | 101600 | 0.0075 | - |
20.4751 | 101700 | 0.0121 | - |
20.4953 | 101800 | 0.0103 | - |
20.5154 | 101900 | 0.0077 | - |
20.5355 | 102000 | 0.0056 | - |
20.5557 | 102100 | 0.0029 | - |
20.5758 | 102200 | 0.0052 | - |
20.5959 | 102300 | 0.0068 | - |
20.6161 | 102400 | 0.0185 | - |
20.6362 | 102500 | 0.004 | - |
20.6563 | 102600 | 0.0024 | - |
20.6765 | 102700 | 0.0035 | - |
20.6966 | 102800 | 0.0029 | - |
20.7167 | 102900 | 0.0112 | - |
20.7369 | 103000 | 0.006 | - |
20.7570 | 103100 | 0.0191 | - |
20.7771 | 103200 | 0.0054 | - |
20.7973 | 103300 | 0.0023 | - |
20.8174 | 103400 | 0.0109 | - |
20.8375 | 103500 | 0.0093 | - |
20.8577 | 103600 | 0.0042 | - |
20.8778 | 103700 | 0.004 | - |
20.8979 | 103800 | 0.0086 | - |
20.9181 | 103900 | 0.0062 | - |
20.9382 | 104000 | 0.0048 | - |
20.9583 | 104100 | 0.0059 | - |
20.9785 | 104200 | 0.0103 | - |
20.9986 | 104300 | 0.007 | - |
21.0187 | 104400 | 0.0085 | - |
21.0389 | 104500 | 0.0053 | - |
21.0590 | 104600 | 0.0056 | - |
21.0791 | 104700 | 0.0062 | - |
21.0993 | 104800 | 0.0091 | - |
21.1194 | 104900 | 0.0013 | - |
21.1395 | 105000 | 0.0051 | - |
21.1597 | 105100 | 0.0047 | - |
21.1798 | 105200 | 0.003 | - |
21.1999 | 105300 | 0.005 | - |
21.2201 | 105400 | 0.0029 | - |
21.2402 | 105500 | 0.0032 | - |
21.2603 | 105600 | 0.0038 | - |
21.2805 | 105700 | 0.0075 | - |
21.3006 | 105800 | 0.0038 | - |
21.3207 | 105900 | 0.0078 | - |
21.3408 | 106000 | 0.0081 | - |
21.3610 | 106100 | 0.0019 | - |
21.3811 | 106200 | 0.0114 | - |
21.4012 | 106300 | 0.0096 | - |
21.4214 | 106400 | 0.0074 | - |
21.4415 | 106500 | 0.0044 | - |
21.4616 | 106600 | 0.0107 | - |
21.4818 | 106700 | 0.0119 | - |
21.5019 | 106800 | 0.0055 | - |
21.5220 | 106900 | 0.002 | - |
21.5422 | 107000 | 0.0033 | - |
21.5623 | 107100 | 0.0068 | - |
21.5824 | 107200 | 0.0046 | - |
21.6026 | 107300 | 0.0058 | - |
21.6227 | 107400 | 0.0073 | - |
21.6428 | 107500 | 0.0031 | - |
21.6630 | 107600 | 0.014 | - |
21.6831 | 107700 | 0.0169 | - |
21.7032 | 107800 | 0.0019 | - |
21.7234 | 107900 | 0.0056 | - |
21.7435 | 108000 | 0.0029 | - |
21.7636 | 108100 | 0.0036 | - |
21.7838 | 108200 | 0.0084 | - |
21.8039 | 108300 | 0.0162 | - |
21.8240 | 108400 | 0.0057 | - |
21.8442 | 108500 | 0.0142 | - |
21.8643 | 108600 | 0.0077 | - |
21.8844 | 108700 | 0.0072 | - |
21.9046 | 108800 | 0.0132 | - |
21.9247 | 108900 | 0.0042 | - |
21.9448 | 109000 | 0.0075 | - |
21.9650 | 109100 | 0.0046 | - |
21.9851 | 109200 | 0.0024 | - |
22.0052 | 109300 | 0.0128 | - |
22.0254 | 109400 | 0.0014 | - |
22.0455 | 109500 | 0.0056 | - |
22.0656 | 109600 | 0.002 | - |
22.0858 | 109700 | 0.0048 | - |
22.1059 | 109800 | 0.0157 | - |
22.1260 | 109900 | 0.0085 | - |
22.1462 | 110000 | 0.0102 | - |
22.1663 | 110100 | 0.0043 | - |
22.1864 | 110200 | 0.004 | - |
22.2066 | 110300 | 0.0051 | - |
22.2267 | 110400 | 0.0028 | - |
22.2468 | 110500 | 0.0042 | - |
22.2670 | 110600 | 0.0076 | - |
22.2871 | 110700 | 0.0106 | - |
22.3072 | 110800 | 0.0025 | - |
22.3274 | 110900 | 0.0073 | - |
22.3475 | 111000 | 0.0073 | - |
22.3676 | 111100 | 0.0121 | - |
22.3878 | 111200 | 0.0056 | - |
22.4079 | 111300 | 0.0071 | - |
22.4280 | 111400 | 0.0071 | - |
22.4482 | 111500 | 0.0145 | - |
22.4683 | 111600 | 0.0042 | - |
22.4884 | 111700 | 0.0079 | - |
22.5086 | 111800 | 0.0094 | - |
22.5287 | 111900 | 0.0059 | - |
22.5488 | 112000 | 0.0063 | - |
22.5690 | 112100 | 0.014 | - |
22.5891 | 112200 | 0.003 | - |
22.6092 | 112300 | 0.0133 | - |
22.6294 | 112400 | 0.0052 | - |
22.6495 | 112500 | 0.0089 | - |
22.6696 | 112600 | 0.0076 | - |
22.6898 | 112700 | 0.01 | - |
22.7099 | 112800 | 0.0015 | - |
22.7300 | 112900 | 0.0184 | - |
22.7502 | 113000 | 0.0128 | - |
22.7703 | 113100 | 0.0122 | - |
22.7904 | 113200 | 0.0114 | - |
22.8105 | 113300 | 0.0025 | - |
22.8307 | 113400 | 0.005 | - |
22.8508 | 113500 | 0.006 | - |
22.8709 | 113600 | 0.0069 | - |
22.8911 | 113700 | 0.0035 | - |
22.9112 | 113800 | 0.0176 | - |
22.9313 | 113900 | 0.0102 | - |
22.9515 | 114000 | 0.0075 | - |
22.9716 | 114100 | 0.009 | - |
22.9917 | 114200 | 0.0023 | - |
23.0119 | 114300 | 0.0053 | - |
23.0320 | 114400 | 0.0037 | - |
23.0521 | 114500 | 0.0106 | - |
23.0723 | 114600 | 0.0049 | - |
23.0924 | 114700 | 0.0094 | - |
23.1125 | 114800 | 0.012 | - |
23.1327 | 114900 | 0.0075 | - |
23.1528 | 115000 | 0.0103 | - |
23.1729 | 115100 | 0.0071 | - |
23.1931 | 115200 | 0.0063 | - |
23.2132 | 115300 | 0.0159 | - |
23.2333 | 115400 | 0.0084 | - |
23.2535 | 115500 | 0.0039 | - |
23.2736 | 115600 | 0.0105 | - |
23.2937 | 115700 | 0.0069 | - |
23.3139 | 115800 | 0.0041 | - |
23.3340 | 115900 | 0.0083 | - |
23.3541 | 116000 | 0.0024 | - |
23.3743 | 116100 | 0.0125 | - |
23.3944 | 116200 | 0.0141 | - |
23.4145 | 116300 | 0.0089 | - |
23.4347 | 116400 | 0.0118 | - |
23.4548 | 116500 | 0.0102 | - |
23.4749 | 116600 | 0.007 | - |
23.4951 | 116700 | 0.0068 | - |
23.5152 | 116800 | 0.0055 | - |
23.5353 | 116900 | 0.0054 | - |
23.5555 | 117000 | 0.0067 | - |
23.5756 | 117100 | 0.0069 | - |
23.5957 | 117200 | 0.0027 | - |
23.6159 | 117300 | 0.014 | - |
23.6360 | 117400 | 0.0055 | - |
23.6561 | 117500 | 0.0054 | - |
23.6763 | 117600 | 0.0063 | - |
23.6964 | 117700 | 0.0049 | - |
23.7165 | 117800 | 0.0064 | - |
23.7367 | 117900 | 0.0092 | - |
23.7568 | 118000 | 0.0075 | - |
23.7769 | 118100 | 0.0168 | - |
23.7971 | 118200 | 0.0048 | - |
23.8172 | 118300 | 0.0033 | - |
23.8373 | 118400 | 0.0029 | - |
23.8575 | 118500 | 0.0074 | - |
23.8776 | 118600 | 0.015 | - |
23.8977 | 118700 | 0.0036 | - |
23.9179 | 118800 | 0.0107 | - |
23.9380 | 118900 | 0.0046 | - |
23.9581 | 119000 | 0.005 | - |
23.9783 | 119100 | 0.0072 | - |
23.9984 | 119200 | 0.0042 | - |
24.0185 | 119300 | 0.0026 | - |
24.0387 | 119400 | 0.002 | - |
24.0588 | 119500 | 0.0012 | - |
24.0789 | 119600 | 0.0089 | - |
24.0991 | 119700 | 0.0037 | - |
24.1192 | 119800 | 0.0073 | - |
24.1393 | 119900 | 0.0086 | - |
24.1595 | 120000 | 0.0116 | 0.5996 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 41
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for marianbasti/ModernBERT-large-BORA
Base model
answerdotai/ModernBERT-largeDataset used to train marianbasti/ModernBERT-large-BORA
Evaluation results
- Cosine Accuracy@1 on modernbert bora evalself-reported0.437
- Cosine Accuracy@3 on modernbert bora evalself-reported0.614
- Cosine Accuracy@5 on modernbert bora evalself-reported0.688
- Cosine Accuracy@10 on modernbert bora evalself-reported0.775
- Cosine Precision@1 on modernbert bora evalself-reported0.437
- Cosine Precision@3 on modernbert bora evalself-reported0.205
- Cosine Precision@5 on modernbert bora evalself-reported0.138
- Cosine Precision@10 on modernbert bora evalself-reported0.077
- Cosine Recall@1 on modernbert bora evalself-reported0.437
- Cosine Recall@3 on modernbert bora evalself-reported0.614