ISNet Background Remover
This model removes backgrounds from images using the ISNet architecture.
Usage
from transformers import AutoModelForImageSegmentation
# Download and load the model
model = AutoModelForImageSegmentation.from_pretrained("YOUR_USERNAME/isnet-background-remover", trust_remote_code=True)
Complete Example
from PIL import Image
from skimage import io
import torch
import torch.nn.functional as F
from transformers import AutoModelForImageSegmentation
from torchvision.transforms.functional import normalize
import numpy as np
# Load model
model = AutoModelForImageSegmentation.from_pretrained("YOUR_USERNAME/isnet-background-remover", trust_remote_code=True)
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
if len(im.shape) < 3:
im = im[:, :, np.newaxis]
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear')
image = torch.divide(im_tensor,255.0)
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
return image
def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
im_array = np.squeeze(im_array)
return im_array
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# prepare input
image_path = "your_image.jpg"
orig_im = io.imread(image_path)
orig_im_size = orig_im.shape[0:2]
model_input_size = [1024, 1024]
image = preprocess_image(orig_im, model_input_size).to(device)
# inference
result = model(image)
# post process
result_image = postprocess_image(result, orig_im_size)
# save result
pil_mask_im = Image.fromarray(result_image)
orig_image = Image.open(image_path)
no_bg_image = orig_image.copy()
no_bg_image.putalpha(pil_mask_im)
no_bg_image.save("output_no_bg.png")
Features
- Removes backgrounds from images
- High-quality segmentation
- Fast inference
- Compatible with transformers library
- One-line model loading with
trust_remote_code=True
Model Architecture
- Based on ISNet (Interactive Image Segmentation Network)
- Uses U-Net style encoder-decoder architecture
- Outputs binary masks for background removal
- Downloads last month
- 48
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support