|
from sympy import false
|
|
import test
|
|
from transformers import PretrainedConfig
|
|
|
|
|
|
class CogniLiteConfig(PretrainedConfig):
|
|
model_type = "minimind"
|
|
|
|
def __init__(
|
|
self,
|
|
dropout: float = 0.0,
|
|
bos_token_id: int = 1,
|
|
eos_token_id: int = 2,
|
|
hidden_act: str = 'silu',
|
|
hidden_size: int = 768,
|
|
intermediate_size: int = None,
|
|
max_position_embeddings: int = 32768,
|
|
num_attention_heads: int = 8,
|
|
num_hidden_layers: int = 16,
|
|
num_key_value_heads: int = 2,
|
|
vocab_size: int = 6400,
|
|
rms_norm_eps: float = 1e-05,
|
|
rope_theta: int = 1000000.0,
|
|
**kwargs
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.dropout = dropout
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.hidden_act = hidden_act
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.vocab_size = vocab_size
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.rope_theta = rope_theta
|
|
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
from transformers.activations import ACT2FN
|
|
from typing import Optional, Tuple, List, Union
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
|
|
return self.weight * self._norm(x.float()).type_as(x)
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
|
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device)
|
|
freqs = torch.outer(t, freqs).float()
|
|
freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1)
|
|
freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1)
|
|
return freqs_cos, freqs_sin
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
def rotate_half(x):
|
|
|
|
return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1)
|
|
|
|
q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim))
|
|
k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim))
|
|
return q_embed, k_embed
|
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|
bs, slen, num_key_value_heads, head_dim = x.shape
|
|
if n_rep == 1:
|
|
return x
|
|
return (
|
|
x[:, :, :, None, :]
|
|
.expand(bs, slen, num_key_value_heads, n_rep, head_dim)
|
|
.reshape(bs, slen, num_key_value_heads * n_rep, head_dim)
|
|
)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: CogniLiteConfig):
|
|
super().__init__()
|
|
|
|
self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads
|
|
assert args.num_attention_heads % self.num_key_value_heads == 0
|
|
self.n_local_heads = args.num_attention_heads
|
|
self.n_local_kv_heads = self.num_key_value_heads
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
self.head_dim = args.hidden_size // args.num_attention_heads
|
|
|
|
self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False)
|
|
self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
|
self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
|
self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False)
|
|
self.attn_dropout = nn.Dropout(args.dropout)
|
|
self.resid_dropout = nn.Dropout(args.dropout)
|
|
self.dropout = args.dropout
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
|
|
|
def forward(self,
|
|
x: torch.Tensor,
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
use_cache=False,
|
|
attention_mask: Optional[torch.Tensor] = None):
|
|
bsz, seq_len, _ = x.shape
|
|
|
|
xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
|
|
|
cos, sin = position_embeddings
|
|
|
|
xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len])
|
|
|
|
|
|
if past_key_value is not None:
|
|
xk = torch.cat([past_key_value[0], xk], dim=1)
|
|
xv = torch.cat([past_key_value[1], xv], dim=1)
|
|
past_kv = (xk, xv) if use_cache else None
|
|
|
|
|
|
xq, xk, xv = (
|
|
xq.transpose(1, 2),
|
|
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
|
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
|
)
|
|
|
|
|
|
if self.flash and seq_len != 1:
|
|
dropout_p = self.dropout if self.training else 0.0
|
|
attn_mask = None
|
|
if attention_mask is not None:
|
|
attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1)
|
|
attn_mask = attn_mask.bool() if attention_mask is not None else None
|
|
|
|
output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True)
|
|
else:
|
|
|
|
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
|
scores = scores + torch.triu(
|
|
torch.full((seq_len, seq_len), float("-inf"), device=scores.device),
|
|
diagonal=1
|
|
).unsqueeze(0).unsqueeze(0)
|
|
|
|
if attention_mask is not None:
|
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
|
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
|
|
scores = scores + extended_attention_mask
|
|
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
|
scores = self.attn_dropout(scores)
|
|
output = scores @ xv
|
|
|
|
|
|
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
|
output = self.resid_dropout(self.o_proj(output))
|
|
return output, past_kv
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, config: CogniLiteConfig):
|
|
super().__init__()
|
|
|
|
if config.intermediate_size is None:
|
|
intermediate_size = int(config.hidden_size * 8 / 3)
|
|
config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64)
|
|
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
|
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, x):
|
|
|
|
return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, layer_id: int, config: CogniLiteConfig):
|
|
super().__init__()
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.hidden_size = config.hidden_size
|
|
self.head_dim = config.hidden_size // config.num_attention_heads
|
|
self.self_attn = Attention(config)
|
|
|
|
self.layer_id = layer_id
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.mlp = FeedForward(config)
|
|
|
|
def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None):
|
|
|
|
residual = hidden_states
|
|
hidden_states, present_key_value = self.self_attn(
|
|
self.input_layernorm(hidden_states), position_embeddings,
|
|
past_key_value, use_cache, attention_mask
|
|
)
|
|
hidden_states += residual
|
|
hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states))
|
|
return hidden_states, present_key_value
|
|
|
|
|
|
class CogniLiteModel(nn.Module):
|
|
def __init__(self, config: CogniLiteConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
self.layers = nn.ModuleList([TransformerBlock(l, config) for l in range(self.num_hidden_layers)])
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads,
|
|
end=config.max_position_embeddings, theta=config.rope_theta)
|
|
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
|
|
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
|
|
|
|
def forward(self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
|
use_cache: bool = False,
|
|
**kwargs):
|
|
|
|
_, seq_length = input_ids.shape
|
|
past_key_values = past_key_values or [None] * len(self.layers)
|
|
start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0
|
|
|
|
|
|
hidden_states = self.dropout(self.embed_tokens(input_ids))
|
|
|
|
|
|
position_embeddings = (
|
|
self.freqs_cos[start_pos:start_pos + seq_length],
|
|
self.freqs_sin[start_pos:start_pos + seq_length]
|
|
)
|
|
|
|
presents = []
|
|
for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)):
|
|
hidden_states, present = layer(
|
|
hidden_states,
|
|
position_embeddings,
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask
|
|
)
|
|
presents.append(present)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
return hidden_states, presents, 0
|
|
|
|
class CogniLiteForCausalLM(nn.Module):
|
|
def __init__(self, config: CogniLiteConfig = None):
|
|
super().__init__()
|
|
self.config = config or CogniLiteConfig()
|
|
self.model = CogniLiteModel(self.config)
|
|
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False)
|
|
|
|
self.lm_head.weight = self.model.embed_tokens.weight
|
|
|
|
def forward(self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
|
use_cache: bool = False,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
**args):
|
|
h, past_kvs, aux_loss = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
**args
|
|
)
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) and logits_to_keep > 0 else slice(None)
|
|
logits = self.lm_head(h[:, slice_indices, :])
|
|
return {
|
|
"last_hidden_state": h,
|
|
"logits": logits,
|
|
"aux_loss": aux_loss,
|
|
"past_key_values": past_kvs
|
|
}
|
|
|
|
import safetensors.torch
|
|
from transformers import AutoTokenizer
|
|
|
|
def init_cognilite_model():
|
|
print("start loading CogniLite model...")
|
|
|
|
|
|
|
|
args = {
|
|
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
|
"hidden_size": 768,
|
|
"num_hidden_layers": 16,
|
|
}
|
|
tokenizer = AutoTokenizer.from_pretrained('./tokenizer/')
|
|
|
|
state_dict = safetensors.torch.load_file("model.safetensors", device=args["device"])
|
|
|
|
model = CogniLiteForCausalLM(CogniLiteConfig())
|
|
|
|
|
|
model.load_state_dict(state_dict, strict= True)
|
|
|
|
print(f'模型参数量: {sum(p.numel() for p in model.parameters() if p.requires_grad)}')
|
|
return model.eval().to(args["device"]), tokenizer
|
|
|
|
import random
|
|
import numpy as np
|
|
def setup_seed(seed):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
def communicate_with_model(random_seed):
|
|
model, tokenizer = init_cognilite_model()
|
|
|
|
print("随机种子是:", random_seed)
|
|
setup_seed(random_seed)
|
|
|
|
prompt= input("你: ")
|
|
|
|
|
|
messages = [{"role": "user", "content": prompt}]
|
|
new_prompt = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
inputs = tokenizer(
|
|
new_prompt,
|
|
return_tensors="pt",
|
|
truncation=True
|
|
).to(device)
|
|
|
|
|
|
input_ids = inputs["input_ids"][0]
|
|
attention_mask = inputs.get("attention_mask", None)
|
|
max_new_tokens = 128
|
|
eos_token_id = tokenizer.eos_token_id
|
|
|
|
exit_reason = None
|
|
|
|
token_list = []
|
|
|
|
print("模型 token 输出:[", end=' ')
|
|
|
|
for _ in range(max_new_tokens):
|
|
with torch.no_grad():
|
|
outputs = model(
|
|
input_ids=input_ids.unsqueeze(0),
|
|
attention_mask=attention_mask
|
|
)
|
|
logits = outputs["logits"]
|
|
|
|
next_token_id = torch.argmax(logits[0, -1], dim=-1).unsqueeze(0)
|
|
if next_token_id.item() == eos_token_id:
|
|
exit_reason = "EOS token detected"
|
|
break
|
|
|
|
token_list.append(next_token_id.item())
|
|
|
|
print(next_token_id.item(), end=' ', flush=True)
|
|
|
|
|
|
input_ids = torch.cat([input_ids, next_token_id], dim=0)
|
|
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = torch.cat([attention_mask[0], torch.ones(1, device=device, dtype=attention_mask.dtype)], dim=0).unsqueeze(0)
|
|
|
|
print("]\n模型文字输出: " + tokenizer.decode(token_list, skip_special_tokens=False))
|
|
|
|
if exit_reason is None:
|
|
print("\n 结束对话原因: 达到最大 Token 数量限制。")
|
|
|
|
elif exit_reason == "EOS token detected":
|
|
print("\n 结束对话原因: EOS token detected.")
|
|
|
|
if __name__ == "__main__":
|
|
random_type = input("请输入随机种子(整数):")
|
|
try:
|
|
random_seed = int(random_type)
|
|
if random_seed <= 0:
|
|
print("随机种子不能为非正整数,使用随机值")
|
|
random_seed = random.randint(0, 10000)
|
|
except ValueError:
|
|
print("无效的随机种子,使用随机值")
|
|
random_seed = random.randint(0, 10000)
|
|
communicate_with_model(random_seed) |