Segformer B0 fine-tuned for clothes segmentation
SegFormer model fine-tuned on ATR dataset for clothes segmentation. The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
extractor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b0_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
- Downloads last month
- 114
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.